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Abstract—We present a new theoretical approach to the processing of multidimensional and
multicomponent images based on the theory of commutative hypercomplex algebras, which
generalize the algebra of complex numbers. The main goal of the paper is to show that
commutative hypercomplex numbers can be used in multichannel image processing in a natural
and effective manner. We suppose that animal brains operate with hypercomplex numbers when
processing multichannel retinal images. In our approach, each multichannel pixel is regarded
as a K-dimensional (KD) hypercomplex number rather than a KD vector, where K is the
number of different optical channels. This creates an effective mathematical basis for various
function–number transformations of multichannel images and invariant pattern recognition.
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INTRODUCTION

Multichannel images are widely applied in Earth remote sensing systems for solving various

scientific and applied problems (see [1–4]). In this paper, we propose novel models for multi-

channel images using commutative hypercomplex algebras. The term “multichannel images” is

used to denote images with more than one component. They are composed of a series of images

fλ0(x), fλ1(x), . . . , fλK−1
(x) obtained in different optical ranges at wavelengths λ0, λ1, . . . , λK−1,

which are called spectral channels, where K is the number of different optical channels. A simple

example is a color image fCol(x, y) = (fR(x, y), fG(x, y), fB(x, y)) with red fR(x, y), green fG(x, y),

and blue fB(x, y) components. If an image is assembled from a small number of channels (less

than ten), then it is called multispectral, whereas an image consisting of several tens or hundreds of

channels is called hyperspectral (of course, this classification is conventional). Multichannel images

are considered as n-dimensional (nD) K-component (vector-valued) signals

f(x) = (f0(x), f1(x), . . . , fK−1(x)) : R
n → VK

with values lying in a KD perceptual vector space VK , where x ∈ Rn for n = 2, 3, . . . . The

following cases are the most interesting:
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(1) 2D and 3D bichromatic images

f(x) = (f0(x1, x2), f1(x1, x2)) : R
2 → V2, f(x) = (f0(x1, x2, x3), f1(x1, x2, x3)) : R

3 → V2;

(2) 2D and 3D trichromatic (color) images

f(x) = (f0(x1, x2), f1(x1, x2), f2(x1, x2)) : R
2 → V3

rgb,

f(x) = (f0(x1, x2, x3), f1(x1, x2, x3), f2(x1, x2, x3)) : R
3 → V3

rgb;

(3) 2D and 3D K-channel images

f(x) = (f0(x1, x2), f1(x1, x2), f2(x1, x2)) : R
2 → V3

rgb,

f(x) = (f0(x1, x2, x3), f1(x1, x2, x3), f2(x1, x2, x3)) : R
3 → V3

rgb;

(4) 2D and 3D bichromatic binocular (two-camera) images (see [5, 6])

fBin(x1, x2) = (fL(x), fR(x)) : R2 → LV2 ⊕ RV2,

fBin(x1, x2, x3) = (fL(x), fR(x)) : R3 → LV2 ⊕ RV2;

(5) 2D and 3D trichromatic (color) binocular images

fBin(x1, x2) = (fL(x), fR(x)) : R2 → LV3
rgb ⊕ RV3

rgb,

fBin(x1, x2, x3) = (fL(x), fR(x)) : R3 → LV3
rgb ⊕ RV3

rgb;

(6) 2D and 3D K-channel binocular images (see [5, 6])

fBin(x1, x2) = (fL(x), fR(x)) : R2 → LVK ⊕ RVK ,

fBin(x1, x2, x3) = (fL(x), fR(x)) : R3 → LVK ⊕ RVK ,

where fL(x) and fR(x) are the images emerging on the retina of the left and right eye, respectively.

For image processing and recognition, we turn the perceptual spaces VK into the corresponding

hypercomplex algebras (and call them perceptual algebras). We develop algebraic models for two

brain levels (the first level is the retina and the second is the visual cortex (VC)) using different

hypercomplex algebras: commutative algebras for the first level, where image processing and

transformation occur, and noncommutative algebras for the second level, where the images are

recognized. The use of noncommutative algebras is related to the fact that many geometric transfor-

mations of images (simultaneous dilatations, rotations, and affine and projective transformations)

belong to noncommutative groups. It turns out that each such transformation can be described by

an appropriate multidimensional hypercomplex number (for example, a quaternion for rotations of

3D images).

One of our hypotheses is that the brain of animals must have innate knowledge of such numbers

and be able to operate with them in the pattern recognition mode. In the next part of this study,

we will show that algebraic models of multichannel images allow us to develop simple, intuitive,

and efficient (on the computational side) invariant algorithms for recognition of such images using

the fast Fourier–Clifford–Galois transforms.

In the proposed algebraic–geometric approach, each multichannel pixel is considered as a KD

hypercomplex number rather than a KD vector (note that the numerical nature does not negate the
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vector nature of a hypercomplex number: the vector space is simply equipped with the operation

of vector multiplication of vectors, which are interpreted as numbers).

In this paper, we interpret a multichannel retinal image as a multiplet-valued signal

f(x) = (f0(x), f1(x), . . . , fK−1(x)) =

K−1∑

s=0

fs(x)ε
s = f0(x)ε

0 + f1(x)ε
1 + . . .+ fK−1(x)ε

K−1,

which takes value in one of the three commutative algebras

AlgRet
K (R | ε0, ε1, . . . , εK−1) = AlgRet

K ,

where εK = −1, 0, or +1. Here ε0, ε1, . . . , εK−1 are hyperimaginary units (hyperspectral units)

with the commutative law of multiplication

εrεs =

⎧
⎨

⎩

εr⊕s (modK) if εK = +1,

Hev (l −m) εr⊕s (modK) if εK = 0,

sgn (l −m) εr⊕s (modK) if εK = −1;

sgn (x) =

{
+1, x ≥ 0,

−1, x < 0;
Hev (x) =

{
+1, x ≥ 0,

0, x < 0,

where l ⊕m is addition modulo K and the sign and Heaviside functions are used.

We rely on the following hypotheses:

1. The brain interprets each pixel in an image not as a multidimensional vector but as a

multidimensional hypercomplex number. If we admit the vector nature of pixels, then we can go

even further and assume the possibility of multiplication of these vectors. Thus, we do not refute

the vector nature of the pixel, but we enrich it with additional mathematical capabilities. We are

talking about expanding the capabilities of the mathematical language for describing the reality by

introducing the pixel multiplication operation.

2. The visual systems of animals with different evolutionary histories use different hypercomplex

algebras to process color and multichannel images. Apparently, the visual cortex region has the

ability to operate with image pixels as with hypercomplex numbers.

3. The brain uses different algebras on the two levels: commutative algebras at the retinal

level for image processing and noncommutative algebras at the VC level for image recognition.

We know that animals are able to recognize their surroundings almost instantly and effectively.

It is important for an engineer to describe this phenomenon in mathematical terms in order to

construct a technical system capable of working as efficiently as the original biological system; the

question of whether the mathematical model used is adequate recedes into the background for an

engineer (in contrast to a biologist and a physicist).

We disagree with L.Kronecker, who said that “God made the integers, and all else is the work

of man.” We assume that God was the first engineer, who knew abstract algebra and used the

theory of hypercomplex numbers to design visual systems of living organisms.

1. ALGEBRAIC MODELS OF GRAY AND BICHROMATIC IMAGES

Bichromatic 2D images f(x1, x2) = (f0(x1, x2), f1(x1, x2)) : R
2 → V2 have two attributes: R2

and V2, i.e., the physical and visual spaces. We equip these spaces with the structures of 2D

algebras of generalized complex numbers AlgSp2 (R | 1, I) and AlgVis
2 (R | 1, J), respectively; i.e.,

R2 → AlgSp2 (R|1, I) := R+R I = {z = x1 + I x2 |x1, x2 ∈ R},
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V2 → AlgVis
2 (R|1, J) := R+RJ = {Z = r + J g | r, g ∈ R},

where I and J are the spatial and bichromatic imaginary units, respectively. These algebras are

called the spatial and bichromatic algebras (see [7–9]) of the physical R2 and visual (perceptual)

V2 spaces, respectively. There exist three spatial algebras.

1. If I2 ≡ I2− = −1, then the algebra AlgSp2 (R | 1, I−) = {z = x+ I−y |x, y ∈ R; I2− = −1} is

the field of spatial complex numbers, where I− = i is the usual classical (elliptic) imaginary unit.

2. If I2 ≡ I2+ = +1, then the algebra AlgSp2 (R | 1, I+) = {z = x + I+y |x, y ∈ R; I2+ = +1}
is the ring of binary spatial complex numbers, where I+ = e is the classical double (hyperbolic)

imaginary unit.

3. If I2 ≡ I20 = 0, then the algebra AlgSp2 (R | 1, I0) = {z = x+ I0y |x, y ∈ R; I20 = −1} is the

ring of dual spatial complex numbers, where I0 ≡ ε is the classical dual (parabolic) imaginary unit.

It is known (see [10]) that these algebras generate various metrics (Euclidean, Minkowskian,

and Galilean) in the 2D physical space. This makes it possible to simply describe geometric

transformations of images of various geometric nature in the algebraic language.

Using the algebras AlgSp2 (R | 1, I), we can introduce algebraic models of gray images in the form

of a function of one generalized complex variable f(x+ Iy) : AlgSp2 (R | 1, I) → R. There exist three

types of such images:

(1) −f(z) : AlgSp2 (R | 1, I−) → R, (2) 0f(z) : AlgSp2 (R | 1, I0) → R, (3) +f(z) : AlgSp2 (R | 1, I+) → R.

These types are defined in the Euclidean (elliptic), Minkowskian (hyperbolic), and Galilean (para-

bolic) planes, respectively.

Similarly, there exist three perceptual algebras with different geometric (metric) properties.

1. If J2 ≡ J2
− = −1, then the perceptual algebra AlgVis

2 (R | 1, J−) = {z = x + J−y |x, y ∈ R;

J2
− = −1} is the field of complex bichromatic numbers, where J− is the bichromatic imaginary unit

similar to the usual classical imaginary unit J− ≈ i.

2. If J2 ≡ J2
+ = +1, then the perceptual algebra AlgVis

2 (R | 1, J+) = {z = x + J+y |x, y ∈ R;

J2
+ = +1} is the ring of double bichromatic numbers, where J+ is the bichromatic imaginary init

similar to the usual double unit J+ ≈ e.

3. If J2 ≡ J2
0 = 0, then the perceptual algebra AlgVis

2 (R | 1, J0) = {z = x + J0y |x, y ∈ R;

J2
0 = 0} is the ring of dual bichromatic numbers, where J0 is the bichromatic imaginary unit similar

to the usual dual unit J0 ≈ ε.

Thus, there exist nine models of bichromatic images f(z) : AlgSp2 (R | 1, I) → AlgVis
2 (R | 1, J)

presented below:

−,−f(z) : AlgSp2 (R | 1, I−) → AlgVis
2 (R | 1, J−), −,0f(z) : AlgSp2 (R | 1, I−) → AlgVis

2 (R | 1, J0),
0,−f(z) : AlgSp2 (R | 1, I0) → AlgVis

2 (R | 1, J−), 0,0f(z) : AlgSp2 (R | 1, I0) → AlgVis
2 (R | 1, J0),

+,−f(z) : AlgSp2 (R | 1, I+) → AlgVis
2 (R | 1, J−), +,0f(z) : AlgSp2 (R | 1, I+) → AlgVis

2 (R | 1, J0),

−,+f(z) : AlgSp2 (R | 1, I−) → AlgVis
2 (R | 1, J+),

0,+f(z) : AlgSp2 (R | 1, I0) → AlgVis
2 (R | 1, J+),

+,+f(z) : AlgSp2 (R | 1, I+) → AlgVis
2 (R | 1, J+).
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To denote six (three spatial and three perceptual) algebras, we use the symbol AlgRet
2 (R | 1, B)

or, briefly, AlgRet
2 , where AlgRet

2 (R | 1, B) = AlgSp2 (R | 1, I) if B = I and AlgRet
2 (R | 1, B) =

AlgVis
2 (R | 1, J) if B = J .

The algebras AlgRet
2 have the conjugation operation, which maps each element Z = a+ Bb to

the element Z̄ = a+Bb = a−Bb. Let Z = a+Bb; then the quadratic form N(Z) := ‖Z‖ = Z Z̄ =

a2 − B2b2 is called the pseudonorm of the number Z = a + Bb, whereas |Z| =
√

N(Z) =
√
Z Z̄

is called its modulus. Obviously, N(Z1 Z2) = N(Z1)N(Z2). Therefore, the 2D algebras AlgSp2 ≡
AlgSp2 (R | 1, I) and AlgVis

2 ≡ AlgVis
2 (R | 1, J) transform into pseudometric spaces:

AlgSp2 (R | 1, J) → Geo
Sp(s1,s2)
2 =

〈
R2, ρ(z1, z2)

〉
,

AlgVis
2 (R | 1, J) → Geo

Vis(s1,s2)
2 =

〈
V2, ρ(Z1, Z2)

〉
,

if we define the following pseudometrics in them:

ρ(Z1, Z2) :=

√
(Z2 − Z1) (Z2 − Z1) =

⎧
⎪⎪⎨

⎪⎪⎩

√
(a2 − a1)2 + (b2 − b1)2, Z ∈ AlgRet

2 (R |B−),
√

(a2 − a1)2 − (b2 − b1)2, Z ∈ AlgRet
2 (R |B+),

|a2 − a1|, Z ∈ AlgRet
2 (R |B0),

where Z1 = a1+Bb1, Z2 = a2+Bb2, and two symbols (s1 = +1, s2 = −1, 0,+1) in the expressions

Geo
Sp(s1,s2)
2 and Geo

Vis(s1,s2)
2 denote the signature of spaces. Depending on the signature (s1, s2),

the algebras transform into the following pseudometric spaces Geo
Ret(s1,s2)
2 :

• the two-dimensional Euclidean geometry Geo
Ret(+,+)
2 =

〈
AlgRet

2 (R |B+); ρ
〉
(the spatial

Geo
Sp(+,+)
2 and perceptual Geo

Vis(+,+)
2 geometries);

• the two-dimensional Minkowskian geometry Geo
Ret(+,−)
2 =

〈
AlgRet

2 (R |B−); ρ
〉
(the spatial

Geo
Sp(+,−)
2 and perceptual Geo

Vis(+,−)
2 geometries);

• the two-dimensional Galilean geometry Geo
Ret(+,0)
2 =

〈
AlgRet

2 (R |B0); ρ
〉

(the spatial

Geo
Sp(+,0)
2 and perceptual Geo

Vis(+,0)
2 geometries).

The set of all points of the generalized complex plane Geo
Ret(s1,s2)
2 satisfying the equation

|Z|2 = a2 − B2b2 = R2 is called the Geo
Ret(s1,s2)
2 -circle of radius R centered at the origin. Let

AlgRet
2 (R | 1, B) ≡ AlgSp2 (R | 1, I); then there are three types of circles: the classical (Euclidean)

Geo
Sp(+,+)
2 -circle, the Minkowskian (hyperbolic) Geo

Sp(+,−)
2 -circle, and the (Galilean) Geo

Sp(+,0)
2 -

circle (i.e., two parallel lines).

Let Z = a + Bb be an arbitrary generalized complex number (spatial or bichromatic). Then

the number Z0 = Z/|Z| has the unit modulus if |Z| = R 
= 0. Clearly, Z = |Z| (a/|Z|+Bb/|Z|) =
R (cosα + B sinα) = ReBθ, where cosα and sinα are trigonometric Euclidean (the classical

functions cosα = cosα and sinα = sinα), Minkowskian (the hyperbolic functions cosα = coshα

and sinα = sinhα), and Galilean functions (cosα = cgα and sinα = sgα).

Definition 1. A bichromatic image

f(z) : AlgSp2 (R | 1, I) → AlgVis
2 (R | 1, J)

is an AlgVis
2 (R|J)-valued function depending on the complex variable z ∈ AlgSp2 (R | 1, I):

f(z) = f0(x1 + I x2) + Jf1(x1 + I x2). (1)
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Definition 2. Transformations

z′ = z+w, z′ = λz, z′ = eIϕspz; Z ′ = Z +W, Z ′ = μZ, Z ′ = eJθchZ,

where z, z′,w ∈ AlgSp2 and Z,Z,W ∈ AlgVis
2 , are called a translation, a scaling , and a rotation of

the physical Geo
Sp(s1,s2)
2 and bichromatic Geo

Vis(s1,s2)
2 spaces, respectively.

These transformations form:

(i) two groups of spatial Tr(Geo
Sp(s1,s2)
2 ) and bichromatic Tr(Geo

Vis(s1,s2)
2 ) translations,

(ii) two groups of spatial Sc(Geo
Sp(s1,s2)
2 ) and bichromatic Sc(Geo

Vis(s1,s2)
2 ) scaling transfor-

mations,

(iii) two groups of physical Rot(Geo
Sp(s1,s2)
2 ) and bichromatic Rot(Geo

Vis(s1,s2)
2 ) rotations.

Image transformations (geometric and color distortions) in the physical and perceptual spaces

can be described in terms of spatial and perceptual algebras. These distortions can be caused by

spatial transformations (translations z′ = z+w, rotations z′ = eIϕspz, and scaling transformations

z′ = λz) and bichromatic transformations (bichromatic translations f+W , color conversions eJθchf ,

and saturation transformations μf).

If f(z) is some original bichromatic image, then the image

μ,θch,W fλ,ϕsp,w(z) = μ eJθch f(λeJϕspz+w) +W (2)

is its distorted version. The spatial distortions here are caused by transformations of the physical

space: z → λeJϕspz +w, while the color distortions are due to transformations of the perceptual

space f → μeJθchf +W .

It turns out that the algebraic models of the bichromatic image (1) and its distorted version (2)

are universal in the sense that many types of multichannel images defined in Euclidean and non-

Euclidean spaces can be written in a similar form using hypercomplex algebras. This circumstance

makes it possible to develop new algorithms for image processing and invariant image recognition.

2. ALGEBRAIC MODELS OF COLOR IMAGES

A color image is a vector-valued function of the form f(x) : Rn → V3
rgb, where V3

rgb is the

trichromatic (color) RGB-space. We will interpret it as a triplet-valued signal f(x) = fr(x)1 +

fg(x)ε
1
col + fb(x)ε

2
col, which takes values in the triplet (color) algebra AlgVis

3 (R | 1, ε, ε2) := R1col +

Rε1col+Rε2col, where 1col, ε
1
col, and ε2col are three hyperimaginary (color) units with one of the three

properties: ε3col = +1, ε3col = 0, or ε3col = −1 (see [11–16]). For brevity, we will denote them as 1,

ε1, and ε2. Obviously, there exist three perceptual color algebras.

1. If ε3 = ε3− = −1, then AlgVis
3 (R | 1, ε−, ε2−) := R1 + Rε1− + Rε2− = {C = r 1 + g ε1− +

b ε2− | r, g, b ∈ R} is the color algebra of color acyclic numbers.

2. If ε3 = ε3+ = +1, then AlgVis
3 (R | 1, ε+, ε2+) := R1 + Rε1+ + Rε2+ = {C = r 1 + g ε1+ +

b ε2+ | r, g, b ∈ R} is the color algebra of color cyclic numbers.

3. If ε3 = ε30 = 0, then AlgVis
3 (R | 1, ε0, ε20) := R1 + Rε10 + Rε20 = {C = r1 + g ε10 + b ε20 |

r, g, b ∈ R} is the color algebra of color nilpotent numbers.

Color cyclic numbers of the form C = x 1 + y ε+ z ε2 (ε3 = 1) were first discovered by Greaves

in [11]. He called these numbers triplets. Taking into account the context of this paper, we call

them color numbers. The addition and multiplication of two color numbers C1 = (r1 + g1ε+ b1ε
2)

and C2 = (r2 + g2ε+ b2ε
2) are defined as:

C1 + C2 = (r1 + g1ε+ b1ε
2) + (r2 + g2ε+ b2ε

2) = (r1 + r2) + (g1 + g2) ε+ (b1 + b2) ε
2,
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C1 · C2 = (r1 + g1ε+ b1ε
2)(r2 + g2ε+ b2ε

2)

= (r1r2 + g1b2 + b1g2) + (r1g2 + r2g1 + b1b2) ε+ (r1b2 + g1g2 + r2b1) ε
2.

It is easy to verify that the triplet product is isomorphic to the cyclic convolution

C1C2 = (r1 + g1ε+ b1ε
2)(r2 + g2ε+ b2ε

2) ≡ (r1, g1, b1) ∗ (r2, g2, b2)

= (r1r2 + g1b2 + b1g2, r1g2 + r2g1 + b1b2, r1b2 + g1g2 + r2b1).

The triplet conjugation of a number C = (r + gε+ bε2) is described by the equality

C̄ = r + gε+ bε2 = r + gε2 + bε1.

The norm ‖C‖2 and the modulus |C|2 are defined by the expressions

‖C‖2 = CC̄ = (r2 + g2 + b2)− (rg + rb+ gb), |C|2 =
√

‖C‖2 ≡
√

CC̄.

Greaves (see [11]) showed that each triplet number has three norms:

||C||1 = |r + g + b|, ||C||2 = (r2 + g2 + b2)− (rg + rb+ gb),

||C||3 = ||C||1 ||C||2 ≡ r3 + g3 + b3 − 3rgb.
(3)

If the distance ρ(C,D) between two triplet numbers C and D is defined as the modulus of their

difference C − D = U = r + gε + bε2, then we can introduce three metrics in the color perceptual

space:

ρ1(C,D) = |C − D|1 = |U|1 = |r + g + b|,

ρ2(C,D) = |C − D|2 = |U|2 = 2
√

(r2 + g2 + b2)− (rg + rb+ gb),

ρ3(C,D) = |C − D|3 = |U|3 = 3
√

r3 + g3 + b3 − 3rgb.

Consequently, the algebra of color numbers AlgVis
3 (R | 1, ε, ε2) turns into three 3D metric spaces:

GeoVis1
3 =

〈〈
A3(R | 1, ε, ε2)

∣∣ |r + g + b|
〉〉

,

GeoVis2
3 =

〈〈
A3(R | 1, ε, ε2)

∣∣ 2
√

(r2 + g2 + b2)− (rg + rb+ gb)
〉〉

,

GeoVis3
3 =

〈〈
A3(R | 1, ε, ε2)

∣∣ 3
√

r3 + g3 + b3 − 3rgb
〉〉

.

Greaves gave algebraic and geometric interpretations of triplet numbers. Algebraically, a color

number C = x + yε + zε2 is the point C = C(x, y, z) ∈ V3
RGB in the 3D color space V3

RGB with

coordinates (x, y, z). The color algebra is algebraically the direct sum of the field of real numbers R

and the field of complex numbers AlgVis
3 = Relu +CEch = R⊕C, where elu = (1 + ε+ ε2)/3 and

Ech = (1 + ω3ε
2 + ω2

3ε)/3 are the so-called orthogonal idempotents (projectors) e2lu = elu, E2
ch =

Ech, eluEch = Echelu = 0, and ω3 := exp(2π/3). Indeed, in accordance with the polynomial

Chinese remainder theorem, we have

AlgVis
3 ≈ R[x]/(x3 − 1) = R[x]/(x − 1)(x2 + x+ 1) ≈ R[x]/(x − 1)⊕R[x]/(x2 + x+ 1) ≈ R⊕C.
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Consequently, every color number C = x+ yε+ zε2 is a linear combination C = aluelu + ZchEch =

(alu, Zch) of the real aluelu and complex ZchEch components in the idempotent basis {elu,Ech},
where

aluelu = Celu = elu = (r + gε+ bε2)[(1 + ε+ ε2)/3] = (r + g + b)[(1 + ε+ ε2)/3],

ZchEch = CEch = elu = (r + gε+ bε2)[(1 + ω3ε
2 + ω2

3ε)/3] = (r + gω1
3 + bω2

3)[(1 + ω3ε
2 + ω2

3ε)/3]

and, hence,

alu = (r + g + b), Zch = (r + gω1
3 + bω2

3) = (r − (g + b)/2) + i
√
3 (g − b)/2.

We call alu ∈ R and Zch ∈ C the luminance and chromatic numbers, respectively. For this

reason, the color images can be considered in two formats:

f(z) = fR(z)1 + fG(z)ε + fB(z)ε
2, f(z) = flu(z)elu + fch(z)Ech = (flu(z), fch(z)).

The first representation is called the (R,G,B) format, and the second is the luminance–chrominance

(LC) format. The latter format (flu(z), fch(z)) defines an image in terms of the luminance flu(z)

and chromatic fch(z) components, where |fch(z)| is the saturation and arg{fch(z)} is the hue of f(z).

Changes in the hue, saturation, and luminance are fairly easy to describe in terms of the color

algebra. Let, for example, A = (alu, Zch) = (alu, |Zch|eiϕ), where alu > 0. Then the transformations

f(z) → A · f(z)

= (alu, Zch) (flu(z), fch(z)) = (alu, |Zch|eiϕ) (flu(z), fch(z)) = (aluflu(z), |Zch|eiϕfch(z))

change the luminance, hue, and saturation of a color image. The set of such transformations forms

the luminance–chromatic group

LCG(AlgVis
3 (R | ε)) = {(alu, Zch) | (alu ∈ R+)& (Zch ∈ C)}.

In particular,

• if A = (alu, Zch) = (1, eiϕ), then the transformations

f(z) → A · f(z) = (1, eiϕ) (flu(z), fch(z)) = (flu(z), e
iϕfch(z))

change the hue of the image. The set of such transformations forms the orthogonal group of

transformations of the hue HOG(AlgVis
3 (R | ε)) = {(1, eiϕ) | eiϕ ∈ C};

• let A = (1, s), s > 0; then the transformations

f(z) → A · f(z) = (1, s) (flu(z), fch(z)) = (flu(z), sfch(z))

change the saturation of the original image. The set of such transformations forms the group of

transformations of the saturation SaG(AlgVis
3 (R | εcol)) = {(1, s) | s ∈ R+};

• if A = (1, Zch) = (1, seiϕ), then the transformations

f(z) → A · f(z) = (1, seiϕ) (flu(z), fch(z)) = (flu(z), se
iϕfch(z))

change both the hue and the saturation of the original image. The set of such transformations

forms the chromatic group

ChG(AlgVis
3 (R | εcol)) = {(1, seiϕ) | (eiϕ ∈ C)& (s ∈ R+)}.
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3. MULTIPLET MODELS OF MULTICHANNEL IMAGES

Traditionally, multichannel images are interpreted as KD vector-valued signals f(x) = (f0(x),

f1(x), . . . , fK−1(x)) : R
n → VK . We will interpret them as multiplet-valued signals f(x) = f0(x)+

f1(x)ε
1 + f2(x)ε

2 + . . . + fK−1(x)ε
K−1, which take value in the multiplet algebra AlgVis

K (R | 1,
ε, . . . , εK−1) = R1 + Rε1 + . . .+ RεK−1, where x ∈ Rn and 1, ε1, . . . , εK−1 (εK = +1, 0, −1) are

multicolor hyperimaginary units (see [12–16]).

Any multiplet number can be represented by a linear combination of hyperimaginary units

M =
∑K−1

i=0 aiε
i with ai ∈ R. These numbers (depending on εK = +1, 0,−1) form three multiplet

algebras:

Alg+,Vis
K (R) ≡

K−1∑

i=0

R εi+, Alg−,Vis
K (R) ≡

K−1∑

i=0

R εi−, Alg0,Vis
K (R) ≡

K−1∑

i=0

R εi0.

The addition of multiplet numbers M1 and M2 is implemented in the three algebras componen-

twise:

M = M1 +M2 =

K−1∑

i=0

aiε
i +

K−1∑

i=0

biε
i =

K−1∑

i=0

(ai + bi)ε
i.

Consequently, with respect to addition, all three algebras form the same vector space. The

multiplication rules for any pair of multiplet numbers M1 and M2 are different in the three multiplet

algebras:

M = M1 ·M2 =
(K−1∑

n=0

anε
n
+

)(K−1∑

m=0

bmεm+

)
=

K−1∑

l=0

(K−1∑

m=0

al�mbm

)
εl+ =

K−1∑

l=0

clε
l
+ for Alg+,Vis

K (R),

M = M1 ·M2 =
(K−1∑

n=0

anε
n
−

)(K−1∑

m=0

bmεm−

)
=

K−1∑

l=0

(K−1∑

m=0

sgn (l −m)al�mbm

)
εl−

=

K−1∑

l=0

clε
l
− for Alg−,Vis

K (R),

M = M1 ·M2 =
(K−1∑

n=0

anε
n
0

)(K−1∑

m=0

bmεm0

)
=

K−1∑

l=0

(K−1∑

m=0

Hev (l −m)al�mbm

)
εl0

=
K−1∑

l=0

clε
l
0 for Alg0,Vis

K (R).

It is easy to see that the multiplet products are isomorphic to discrete K-point convolutions that

are the cyclic, acyclic, and nilpotent convolutions, respectively:

cl =

K−1∑

m=0

al�mbm, cl =

K−1∑

m=0

sgn (l −m)al�mbm, cl =

K−1∑

m=0

Hev (l −m)al�mbm,
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where l �m is subtraction modulo K. Using the polynomial Chinese remainder theorem, we can

easily prove that the two algebra Alg+,Vis
K (R) and Alg−,Vis

K (R) are the direct sums of the real and

complex fields:

Alg+,Vis
K (R) ≡ (R · e1lu)⊕ (R · e2lu)⊕

K/2−1∑

j=1

C ·Ej
ch if K is even

and

Alg+,Vis
K (R) ≡ RKlu ⊕CKch = R · e1lu ⊕

(K−1)/2∑

j=1

C · Ej
ch if K is odd;

similarly,

Alg−,Vis
K (R) =

K/2∑

j=1

C ·Ej
ch if K is even

and

Alg−,Vis
K (R) = R · e1lu +

(K−1)/2∑

j=1

C ·Ej
ch if K is odd,

where eilu and Ej
ch are “real” and “complex” orthogonal idempotents such that (eilu)

2 = eilu,

(Ej
ch)

2 = Ej
ch, and eiluE

j
ch = Ej

che
i
lu for all i and j.

Let Klu = 0, 1, 2 and Kch = K/2, K/2 − 1, (K − 1)/2. Every multiplet M ∈ Alg±,Vis
K (R) can

be presented as a linear combination of Klu “scalar” terms and Kch “complex” terms:

M =

Klu∑

i=1

ai e
i
lu +

Kch∑

j=1

zj E
j
ch.

The real numbers ai ∈ R are called multiluminances and the complex numbers zj ∈ C are called

multichromates. In this representation, the two basic arithmetic operations have a simple form:

M1+M2=
(Klu∑

i=1

aie
i
lu+

Kch∑

j=1

zj E
j
ch

)
+
(Klu∑

i=1

bie
i
lu+

Kch∑

j=1

wj E
j
ch

)
=
(Klu∑

i=1

(ai+bi)e
i
lu+

Kch∑

j=1

(zj+wj)E
j
ch

)
,

M1 ·M2 =
(Klu∑

i=1

aie
i
lu +

Kch∑

j=1

zj E
j
ch

)
·
(Klu∑

i=1

bie
i
lu +

Kch∑

j=1

wj E
j
ch

)
=
( Klu∑

i=1

aibie
i
lu +

Kch∑

j=1

zjwj E
j
ch

)
.

Multiplet algebras are not fields. They form numerical rings with zero divisors.

Definition 3. Multichannel 2D signals of the type

f(z) =
K−1∑

i=0

fi(z)ε
i, f(z) =

Klu∑

i=1

[f i
lu(z) · eilu] +

Kch∑

j=1

[f jch(z) ·E
j
ch]

are called multiplet-valued images in the multiplet and multiluminance–chrominance formats, re-

spectively.

The first format specifies an image by K luminances of each channel; the second format specifies

it by Klu luminance terms (f1
lu(z), f

2
lu(z), . . . , f

Klu
lu (z)) and Kch chromatic terms (f1ch(z), f

2
ch(z), . . . ,
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fKch
ch (z)), where |f1ch(z)|, |f2ch(z)|, . . . , |fKch

ch (z)| are multisaturations and arg{f1ch(z)}, arg{f2ch(z)},
. . ., arg{fKch

ch (x)} are multihues of the multichannel image f(z).

It is easy to describe changes in the multiluminance and multichrominance of the multichannel

image in terms of the multiplet algebra AlgVis
K (R) as a transformation f(z) → M · f(z) for an

appropriate multiplet number M. For example, if

M =
(
a1lu, a

2
lu, . . . , a

Klu
lu ;Z1

ch, Z
2
ch, . . . , Z

Kch
ch

)

=
(
a1lu, a

2
lu, . . . , a

Klu
lu ; |Z1

ch| eiϕ
1
ch , |Z2

ch| eiϕ
2
ch , . . . , |ZKch

ch | eiϕ
Kch
ch

)
,

then the transformation

f(z) → M · f(z) =
(Klu∑

i=1

[ailu · eilu] +
Kch∑

j=1

[ |Zj
ch| e

iϕj
ch · Ej

ch]
)
·
(Klu∑

i=1

[f i
lu(z) · eilu] +

Kch∑

j=1

[f jch(z) ·E
j
ch]

)

=
(Klu∑

i=1

[ailuf
i
lu(z) · eilu] +

Kch∑

j=1

[ |Zj
ch| e

iϕj
chf jch(z) · E

j
ch]

)

changes the multiluminances, multihues, and multisaturations. The set of such transformations

forms the group

MLCG(Ak(R|1, ε1, ε2, . . . , εK−1))

= {(a1lu, a2lu, . . . , a
Klu
lu ; Z1

ch, Z
2
ch, . . . , Z

Kch
ch ) | (a1lu, a2lu, . . . , a

Klu
lu ∈ R+)& (Z1

ch, Z
2
ch, . . . , Z

Kch
ch ∈ C)}.

We suppose that the brain can use hypercomplex algebras to mentally change the multilumi-

nance and multichrominance of multichannel images that arise in the brain memory on the so-called

“screen of mind,” for example, during sleep.

4. SYNTHESIS OF COLOR TRANSFORMATIONS, WAVELETS, AND SPLINES

4.1. Orthounitary transformations of color images. The classical spectral analysis based

on orthogonal and unitary transformations plays a pivotal role in digital image processing. Trans-

formations similar to the discrete Fourier transform and discrete Walsh transform are extensively

used in various applications (filtering, compression, spectral density estimation, and so on). The

question naturally arises about the synthesis of transformations of color (triplet-valued) images.

In this section, we propose a wide class of so-called orthounitary transformations for color image

processing.

Discrete 2D color (N × N)-images fcol :=
[
fcol(i, j)

]N
i,j=1

are defined as 2D (N × N)-arrays

with pixels written in the (R,G,B) or LC formats. Here every color pixel fcol(i, j) at a position

(i, j) is a triplet number written in the (R,G,B) or LC formats, respectively. All the images

fcol := [fcol(i, j)]
N
i,j=1 form the N2-dimensional vector space (AlgVis

3 )N
2
over a triplet algebra.

Definition 4. The quantity Nk(fcol) :=
∑

(i,j)∈Z2
N

‖fcol(i, j)‖k is called the norm of the image fcol,

where ‖ · ‖k, k = 1, 2, 3, is one of the three triplet norms (3).

Definition 5. The linear operator L2D : (AlgVis
3 )N

2 → (AlgVis
3 )N

2
is said to be orthounitary

(or color) if it preserves the norm of a color image.
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Note that orthogonal transformations preserve the norm of real-valued (gray) images and

unitary transformations preserve the norm of complex-valued (bichromatic) images. Since a triplet

number in the LC format is a kind of aggregate of real and complex numbers, it is natural to call

these transformations orthounitary or color. Such transformations can be synthesized in the LC

format using arbitrary orthogonal O2D and unitary U2D 2D transformations as follows:

L2D = O2Delu + U2DEch = (O1D ⊗O1D)elu + (U1D ⊗ U1D)Ech,

where ⊗ is the tensor product. Hence, each pair (O1D, U1D) of orthogonal O1D and unitary U1D

transformations generates an orthounitary transformation L2D= (O1D⊗O1D)elu+(U1D⊗U1D)Ech.

Some color conversions are shown in Table 1 as an example.

Table 1

F Ẇ Ḣd Ẇv

W W · elu + F ·Ech W · elu + Ẇ ·Ech W · elu + Ḣd ·Ech W · elu + Ẇv ·Ech

Hd Hd · elu + F ·Ech Hd · elu + Ẇ ·Ech Hd · elu + Ḣd ·Ech Hd · elu + Ẇv ·Ech

Ht Ht · elu + F ·Ech Ht · elu + Ẇ ·Ech Ht · elu + Ḣd ·Ech Ht · elu + Ẇv ·Ech

Hr Hr · elu + F ·Ech Hr · elu + Ẇ ·Ech Hr · elu + Ḣd ·Ech Hr · elu + Ẇv ·Ech

Wv Wv · elu + F ·Ech Wv · elu + Ẇ ·Ech Wv · elu + Ḣd ·Ech Wv · elu + Ẇv ·Ech

In Table 1 O1D = W, Hd, Ht, Hr, Wv are orthogonal Walsh, Hadamard, Hartley, Haar trans-

forms, and a wavelet transform, respectively; U1D = F, Ẇ , Ḣd, Ẇ v are a unitary Fourier transform,

complex-valued Walsh and Hadamard transforms, and, finally, a complex-valued wavelet transform,

respectively.

If O =
[
ϕk(n)

]N−1

k,n=0
and U =

[
ψk(n)

]N−1

k,n=0
are general orthogonal and unitary transforma-

tions whose rows constitute bases of real-valued and complex-valued functions
{
ϕk(n)

}N−1

k,n=0
and

{
ψk(n)

}N−1

k,n=0
, then the expression

(O ⊗O)elu + (U ⊗ U)Ech = ([ϕk1(n1)]⊗ [ϕk2(n2)])elu + [ψk1(n1)]⊗ [ψk2(n2)]Ech

= [ϕk1(n1)ϕk2(n2)]elu + [ψk1(n1)ψk2(n2)]Ech

represents a color transformation, where

{
ϕk1(n1)ϕk2(n2)

}N−1, N−1

k1,k2=0, n1,n2=0
and

{
ψk1(n1)ψk2(n2)

}N−1, N−1

k1,k2=0, n1,n2=0

form N2 orthogonal and unitary basis functions.

4.2. Orthounitary (color) wavelets. Let ψR(x) be a real-valued mother wavelet, and let

ψR
s,τ (x) be its shifted and scaled versions:

ψR
s,τ (x) =

(√
|s|

)−1
ψR

(x− τ

s

)
, s, τ ∈ R, s 
= 0.

They form an orthogonal basis of the space L2(R). We construct color wavelets as combinations

of luminance and chromatic components. As the first component, we use the real-valued wavelet

ψR(x). The chromatic component is defined as an analytic complex-valued signal of the form

ψCh
s,τ (x) = ψR

s,τ (x) + j H1{ψR
s,τ (x)},

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 313 Suppl. 1 2021



HYPERCOMPLEX MODELS OF MULTICHANNEL IMAGES S167

where H1{·} is the scalar Hilbert transform. Using idempotents elu and ECh, we construct the

color basis wavelets

ψCol
s,τ (x) = ϕlu

s,τ (x) · elu + ψCh
s,τ (x) ·ECh = ϕlu

s,τ (x) · elu + [ϕlu
s,τ (x) + jH{ϕlu

s,τ (x)}] · ECh

= ϕlu
s,τ (x) · [elu +ECh] + jH{ϕlu

s,τ (x)} · ECh = ϕlu
s,τ (x) · I3 + j H{ϕlu

s,τ (x)} ·ECh,

where ϕlu
s,τ (x) = ϕR

s,τ (x) is the real-valued (luminance) component of the wavelet, ψCh
s,τ (x) is its

complex-valued (chromatic) component, and I3 = elu +ECh is the identity (3× 3)-transformation.

Obviously, the analytic functions of two variables

ψCol
s1,τ1(x)ψ

Col
s2,τ2(y) = ϕlu

s1,τ1(x)ϕ
lu
s2,τ2(y) · elu + [ϕlu

s1,τ1(x)ϕ
lu
s2,τ2(y) + j H2{ϕlu

s1,τ1(x)ϕ
lu
s2,τ2(y)}] ·ECh

= ϕlu
s1,τ1(x)ϕ

lu
s2,τ2(y) · I3 + j H2{ϕlu

s1,τ1(x)ϕ
lu
s2,τ2(y)} ·ECh

form two-dimensional wavelets, where H2{·} is the two-dimensional Hilbert transform.

We define a two-dimensional color (orthounitary) wavelet transform as

F col
COUT(s1, τ1, s2, τ2) =

(√
|s1| |s2|

)−1

+∞∫

−∞

+∞∫

−∞

fcol(x, y)ψ
Col
s1,τ1(x)ψ

Col
s2,τ2(y) dx dy.

4.3. Orthounitary splines. Color splines can be constructed similarly to color wavelets.

Let Spl(x) be a real-valued spline. A color spline is the triplet-valued function

SplCol(x) = Spl(x) · elu + [Spl(x) + j H{Spl(x)}] · ECh

= Spl(x) · [elu +ECh] + j H{Spl(x)} ·ECh = Spl(x) · I3 + j H{Sp(x)} · ECh. (4)

Suppose, for example, that Spl(x) ≡ BSpl(x) is an arbitrary B-spline, which is constructed

using an iterative convolution of a rectangular pulse:

BSpl0(x) =

⎧
⎨

⎩

1, −1/2 < x < 1/2,

1/2, |x| = 1/2,

0 otherwise,

BSpln(x) = (BSpln−1 ∗BSpl0)(x),

where ∗ is the convolution symbol. In accordance with (4), the color scalar B-spline has the form

BSplCol
n (x) = BSpln(x) · I3 + j H{BSpln(x)} ·ECh.

Obviously, the functions

BSplCol
n (x) ·BSplCol

n (y) = BSpln(x) · BSpln(y) · I3 + j H2{BSpln(x) · BSpln(y)} ·ECh

are two-dimensional splines.

CONCLUSIONS

A new algebraic approach to mathematical models of multichannel images based on commuta-

tive hypercomplex algebras is developed. The aim of the paper has been to show that hypercomplex

algebras are an adequate mathematical tool for describing multichannel images. A sufficient number

of arguments can be given in favor of the fact that the brain of animals gained the evolved ability to

operate with hypercomplex numbers in the process of image processing and recognition. Therefore,

the brain of animals can be considered as a computer operating in a certain hypercomplex algebra.
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