Таким образом, анализ полученных данных позволяет сделать выводы о влиянии первичных, вторичных и третичных аминов, применяемых в качестве модификатора в процессе синтеза, на физико-химические показатели смол, а также на физико-механические свойства ДСтП, полученных на их основе. Токсичность плит, полученных на основе карбамидоформальдегидной смолы, модифицированной триэтаноламином (КФ-МТ-ТЭ-олА), соответствует классу эмиссии Е1.

Литература

- 1. Альберт А., Сержент Е. Константы ионизации кислот и оснований. Л.: Химия, 1964. 79 с.
- 2. Молоткова Н.Н. Функциональный состав олигомеров и его влияние на химическую структуру отвержденных мочевиноформальдегидных смол: Автореф. дис. канд. хим. наук / НИИПМ НПО «Пластмассы». М., 1988.

УДК 674.815-41

Т.С. Выдрина, В.Г. Бурындин, В.В. Глухих, А.П. Попова (Уральская государственная лесотехническая академия)

ПОИСК УСЛОВИЙ СИНТЕЗА КАРБАМИДОФОРМАЛЬДЕГИДНЫХ ОЛИГОМЕРОВ ДЛЯ ПОЛУЧЕНИЯ ФАНЕРЫ КЛАССА E1

Изучением функционального состава, свойств карбамидоформальдегидных олигомеров (КФО) и фанеры в зависимости от условий синтеза модифицированных КФО показана необходимость пониженного исходного мольного соотношения карбамида (К) к формальдегиду (Ф), глубокой степени конденсации на кислой стадии и конечного мольного соотношения К:Ф=1:1,4 для получения фанеры класса Е1 с высокими физико-механическими свойствами.

Согласно результатам работ [1,2] низкая токсичность, хорошая клейкость и прочность наблюдаются у древеснокомпозиционных материалов на основе карбамидоформальдегидных олигомеров (КФО) с повышенным содержанием метиленовых связей - CH₂ - [1], с преоб-

данием суммы первичных -CO- NH_2 (ПА) и вторичных CO- NH_2 (ВА) амидогрупп над метилольными - CH_2OH (МГ) [2] и со способностью формировать при отверждении надмолекулярную структуру с большей степенью кристалличности [1].

Условия синтеза КФО с указанной структурой для получения малотоксичных древесностружечных плит (ДСтП) достаточно интенсивно изучаются и в этом направлении достигнуты положительные результаты [2].

Для снижения токсичности фанеры в основном используют КФО, модифицированные различными соединениями [3]. Однако публикаций, посвященных выявлению оптимальных условий синтеза таких олигомеров, установлению взаимосвязи между этими условиями, структурой, свойствами КФО и свойствами получаемой фанеры, практически нет.

Целью данной работы являлся поиск наилучших условий синтеза малотоксичных КФО, модифицированных этиленгликолем (ЭГ), для получения экологически безопасной фанеры. С этой целью выполнен ряд экспериментов с варьированием исходного и конечного мольных соотношений (К:Ф) карбамида (К) к формальдегиду (Ф) и с варьированием глубины процесса кислотной конденсации мономеров в присутствии модификатора. Выбор модификатора ЭГ был основан на ранее полученных данных о его стабилизирующем действии на процессы, протекающие во время кислотной конденсации, и снижении вероятности преждевременного отверждения на данной стадии [2].

Для оценки взаимосвязи условий синтеза олигомеров с их структурой и свойствами, а также свойствами фанеры, изучено изменение функционального состава КФО при изменении режимов синтеза и определены физико-механические и токсикологические свойства трехслойной фанеры на основе синтезированных олигомеров.

Исходное мольное соотношение К:Ф варьировалось от 1:2 до 1:1,8, конечное от 1:1,2 до 1:1,4. Глубина процесса конденсации на кислой стадии контролировалась по так называемому "водному числу" [4], значение которого изменялось от 2 до 4. Количество (0,004 моля/моль К) и стадия введения модификатора были аналогичны оптимальным, выявленным ранее при поиске оптимальных условий синтеза малотоксичных смол для ДСтП [2]. Анализ КФО осуществ-

лялся по ГОСТ 14231-88. Структура и функциональный состав КФО оценивались методами ИК-спектроскопии и титриметрии. Для отнесения полос поглощения в ИК-спектрах и выполнения количественных расчетов использована методика, изложенная в работе [5]. Трехизготавливалась на основе березового шпона фанера (ГОСТ 99-75) горячим прессованием при температуре плит пресса 140...145⁰C, удельном давлении 2,2 МПа по следующей циклограмме: подъем давления - 25...30 с; выдержка при указанном удельном давлении - 180 с; сброс давления до 0,3...0,4 МПа - 45 с; сброс остаточного давления - 15 с.. Расход связующего (КФО с 1,5 % отвердителя) составлял 110 г/м² намазываемой поверхности. Физикомеханические свойства фанеры определялись по ГОСТ 9624-72, ГОСТ 9621-72, ГОСТ 10634-88, ГОСТ 10635-88. Эмиссия формальдегида из фанеры оценена по методу WKI.

Для получения достоверных результатов синтез олигомеров, изготовление образцов фанеры в одних и тех же условиях и определение всех свойств выполнены не менее чем в двух параллелях. Результаты исследований с учетом полученных предельных ошибок используемых методов представлены в таблицах. Анализ данных, полученных в первой серии опытов при глубокой степени конденсации на кислой стадии ("водное число" равно двум), достигаемой при введении модификатора, и при конечном мольном соотношении К:Ф = 1:1,2, показал следующее (табл. 1).

Все синтезированные олигомеры содержат свободного формальдегида не более 0,15 %; эмиссия формальдегида из фанеры не превышает 10,5 мг/ 100 г. При снижении исходного мольного соотношения К:Ф с 1:2 до 1:1,8 содержание метилольных групп в смолах практически не изменяется и составляет 10...11 %, но содержание третичных атомов азота уменьшается на 3...7 %. Очевидно, в этих условиях получаются олигомеры с меньшей разветвленностью молекул или с меньшим содержанием в них циклических продуктов конденсации. Такая конфигурация цепей способствует формированию более плотной глобулярной конформации молекул олигомеров и может положительно сказываться на физико-механических свойствах фанеры, что фактически подтверждается результатами представленных исследований. Водопоглощение и выделение формальдегида из фанеры соответственно снижаются, а прочность на скалывание -

Таблица 1

Влияние исходного мольного соотношения К:Ф на свойства КФО и фанеры	ния К:Ф на	свойства КФС	и фанеры	
Показатель	Исхо	цное мольное	Исходное мольное соотношение К:Ф	ъ
	1:1,80	1:1,85	1:1,90	1:2,00
Массовая доля сухого остатка, %	66,1	9,99	66,7	65,4
Содержание свободного формальдегида, %	0,15	0,15	0,15	0,09
Время желатинизации при (100±2)⁰С, с	06	06	80	80
Липкость при (20±2)°С, с	o	14	2	6
Массовая доля метилольных групп по данным				
ИК-спектроскопии (к сухому остатку смолы), %	11,0	10,3	10,2	10,8
Массовая доля третичного азота в амидных груп-				
пах по данным ИК-спектроскопии (к общему со-				
даржанию азота), % отн.	22,5	27,2	26,4	29,8
Эмиссия формальдегида, мг/100 г фанеры	7,1	10,5	10,5	8,9
Предел прочности фанеры при скалывании, МПа	1,3	ı	9,0	8,0
Водопоглощение фанеры, %	55	99	09	71
Предел прочности фанеры при статическом				
изгибе, МПа	100	120	80	100

Конечное мольное соотношение К:Ф=1:1,2. Глубина конденсации до водного числа, равного 2.

повышается . Однако абсолютное значение предела прочности фанеры при скалывании (1,3 МПа) уступает требованиям, заложенным в ГОСТ 14231-88. Это может быть обусловлено недостаточной долей реакционно-способных метилольных групп, ~ в 1,5 раза меньшей, чем в промышленных смолах марки КФ-О, что, вероятно, приводит к формированию достаточно редкой пространственной межглобулярной сетки в отвержденных КФО.

С целью увеличения содержания метимольных групп в олигомерах в последующей серии опытов было изменено два условия: повышено конечное мольное соотношение К:Ф до 1:1,4 и проведена стадия кислотной конденсации при синтезе КФО до глубины, соответствующей "водному числу" 2 и 3.

Результаты данной серии экспериментов (табл. 2) подтвердили выявленые выше тенденции, а именно, уменьшение количества третичных атомов азота (соответственно разветвленности) в молекульх олигомеров на 0,6...4,6 % при снижении исходного мольного соотношения К:Ф; незначительное колебание содержания метилольных групп, рост прочности фанеры при скалывании и изгибе, повышение водостойкости и т.д.

Повышение конечного мольного соотношения К:Ф до 1:1,4 при сохранении прежней глубины кислотной конденсации ("водное число" равно 2) и при пониженном исходном соотношении К:Ф = 1:1,85 привело к увеличению содержания метилольных групп до 14,7 % (для сравнения в смоле-аналоге марки КФ-Ж содержание МГ равно $\sim 20\%$) , хотя содержание третичных атомов азота (7% против 21...25% у КФ-Ж) и соответственно разветвленность КФО остались невысокими. Это улучшило когезионные свойства КФО и повысило их липкость более чем в три раза, увеличило реакционную способность олигомеров, что подтверждается снижением времени желатинизации на 13...27 с. Кроме того, с ростом числа метилольных (- $\mathrm{CH_20H}$)- групп наблюдается значительное повышение прочности фанеры при скалывании (с 1,3 до 1,8 МПа) и статическом изгибе (с 120 до 170 МПа).

Несмотря на прирост количества метилольных групп, являющихся, как известно, одним из источников выделения формальдегида, и несмотря на снижение отношения $M\Gamma : \Sigma(\Pi A + B A)$ до величины менее 3, токсичность фанеры не повысилась (табл. 2).

Таблица 2 Влияние исходного мольного соотношения К.Ф и глубины конленсации на свойства КФО и фанелы

Блияние исходного мельного соотношения к.Ф и глуоины конденсации на своиства кФО и фанеры	DINOMHEL	сонденсаци	и на свои	CTBA POON	фанеры
	Й	сходное мо	пъное соо	Исходное мольное соотношение К:Ф	Φ.
Показатель	Глубина	Глубина конденсации до	ой ии	Глубина к	Глубина конденсации
	ВОД	водного числа 2	2	до водног	до водного числа 3
	1:1,85	1:1,90	1:2,00	1:1,85	1:2,00
Массовая доля сухого остатка, %	68,1	68,2	65,4	71,0	62,3
Содержание свободного формальдегида, %	0,15	0,02	0,18	60,0	90,0
Время желатинизации при (100±2)°С, с	63	63	29	59	75
Липкость при (20±2)°С, с	45	20	20	40	48
Массовая доля метилольных групп по данным					
ИК-спектроскопии (к сухому остатку смолы), %	14,7	14,2	12,8	13,5	12,5
Массовая доля третичного азота в амидных					
группах по данным ИК-спектроскопии (к общему					
содержанию азота), % отн.	17,1	17,4	21,7	22,0	22,3
Эмиссия формальдегида, мг/100 г фанеры	9,6	6,8	8,8	15,7	15,8
Предел прочности фанеры при скалывании, МПа	1,8	ı	1,4	1,3	1,5
Водопоглощение фанеры, %	42	42	51	52	20
Предел прочности фанеры при статическом					
изгибе, МПа	170	130	150	120	150
Содержание циклов (к общему содержанию					
азота), % отн.	3,8	_	7,2	5,2	8,7

* Конечное мольное соотношение К:Ф=1:1,4.

Очевидно, в данном случае вновь влияет конфигурационный эффект, выражающийся в более плотной укладке малоразветвленных молекул в глобулы и уменьшении их размера. Это ведет к снижению свободного межглобулярного пространства, к повышению удельной объемной концентрации взаимодействующих функциональных групп и к росту вероятности их участия в реакции отверждения с образованием более густой сетки поперечных химических связей, результатом чего являются низкий уровень эмиссии формальдегида из фанеры, меньшая величина водопоглощения и высокая прочность фанеры. Для подтверждения данного предположения целесообразно в дальнейшем оценить размер глобулярных частиц молекул олигомеров, образующихся при различных условиях синтеза.

Снижение глубины конденсации на кислой стадии до уровня, соответствующего водному числу 3, несмотря на невысокое исходное мольное соотношение К:Ф=1:1,85 (конечное соотношение К:Ф=1:1,4, ведет к получению КФО с большим содержанием третичных атомов азота (~22% против 17%), а значит и с большей разветвленностью, котя количество метилольных групп при этом остается невысоким (12,5...13,5%). Повышенная разветвленность в этом случае объясняется большей долей (табл. 2) фрагментов циклических структур, увеличивающих жесткость молекул олигомеров и препятствующих их плотной упаковке, что отрицательно сказывается на свойствах фанеры. Водопоглощение фанеры в данном случае на 10 %, а эмиссия формальдегида в 1,6...1,8 раза выше, чем у фанеры на основе менее разветвленных КФО, полученных в условиях глубокой конденсации на кислой стадии.

Таким образом, для получения малотоксичной фанеры класса E1 с высокими физико-механическими свойствами предпочтительно применять КФО, полученные в условиях глубокой конденсации на кислой стадии в присутствии малых количеств этиленгликоля, при соблюдении пониженного исходного мольного соотношения К:Ф = 1:1,8...1,85 и конечного мольного соотношения К:Ф = 1:1,4. Указанные условия способствуют образованию менее разветвленных молекул олигомеров с достаточной долей метилольных групп, что, по всей вероятности, обеспечивает повышенную плотность упаковки молекул в глобулы и формирование более густой сетки химических узлов при отверждении.

Литература

- 1. Gierlinska Irena, Starzynska Krystina. Badania kleistoscizy-wic mocznikowo-formaldehydrowych otrymanych przyvzyciv formalinyztezo-nej. // Przem. drzew., 1987. 38. №3. Z. 28-30.
- 2. Глухих В.В. Снижение токсичности древесных композиционных материалов на основе оптимизации химического состава карбамидных связующих: Автореф. дис. ... д-ра техн. наук. Екатеринбург, 1994.
- 3. Доронин Ю.Г., Кондратьев В.П. Карбамидоформальдегидные смолы для водостойкой и нетоксичной фанеры. // Деревообраб. промсть. 1992. № 5 . С. 9-12.
- 4. Мишкин С.М. Технология облицовочных материалов на основе модифицированных карбамидоформальдегидных смол: Автореф. дис. ... канд. техн. наук. М., 1996.
- 5. Молоткова Н.Н. Функциональный состав олигомеров и его влияние на химическую структуру отвержденных мочевиноформальдегидных смол: Автореф. дис. ... канд. хим. наук. М., 1988.

УДК 678.02:678.652'41'21:674.815-41

В.Б. Войт, Д.Ф. Хусаинов (Уральская государственная лесотехническая академия)

СВОЙСТВА ДС-П С ТОЧКИ ЗРЕНИЯ РЕОКИНЕТИКИ ОТВЕРЖДЕНИЯ КАРБАМИДОФОРМАЛЬДЕГИДНОЙ СМОЛЫ В ПРОЦЕССЕ ЕЕ СТАРЕНИЯ

Исследовано влияние старения карбамидоформальдегидных смол различного химического состава на реокинетику процесса отверждения этих смол. Изменение времени гелеобразования в процессе старения зависит от начального содержания в смоле метилольных групп и носит экспоненциальный характер. Увеличение времени старения для изученных смол приводит к диаметрально противоположным характерам изменения водопоглощения и разбухания ДСтП. Кроме того, для карбамидоформальдегидных смол вне зависимости от их химического состава существует единая выходящая из начала координат зависимость достижения гель-точки и прочности готовой ДСтП.

Карбамидоформальдегидные олигомеры (КФО) на сегодняшний день служат самым распространенным связующим в производстве самых разнообразных древесностружечных композиционных мате-