Литература

- 1. Куличихин С.Г. Реологические закономерности гелеобразования реакционноспособных олигомеров// Механика композитных материалов. 1992. № 3. С. 140-141.
- 2. Malkin A.Y., Kulichikhin S.G. Rheokinetiks of Curing// Adv. Polimer Sci. 1991. № 101. P. 217-257.
- 3. Реологические характеристики отверждающихся меламиноформальдегидных смол/ С.Г. Куличихин, З.Д. Абенова. Н.И. Башта, В.А. Кожина, О.П. Блинкова, Н.М. Романов, Г.С. Матвелашвили, А.Я.Малкин//Высокомолекулярные соединения. А. 1. 1989. Т. 31. № 11. С. 2372-2377.
- 4. Глухих В.В., Бурындин В.Г., Войт В.Б., Лобанова Э.Б. Влияние старения карбамидных смол на их свойства и свойства древесностружечных плит// Технология древесных плит и пластиков: Межвуз. сб. науч.тр. Екатеринбург: УГЛТА, 1995. С. 26-33.
- 5. Robitschen P., Christensen R.L. Hydrolitic Degradation of Cured Urea-Formaldehyde Resin//Duteiwiez Your. Y. Apple. Polym. Sci., 1983. V. 28. №11. P. 3313-3320.

УДК 674.815-41

Н.М. Мухин, Н.В. Холмогорова, Т.В. Трохова (Уральская государственная лесотехническая академия)

ОБ ИСПОЛЬЗОВАНИИ ЛИГНОСУЛЬФОНАТОВ В ПРОИЗ-ВОДСТВЕ ДРЕВЕСНЫХ ПРЕСС-МАСС НА ОСНОВЕ КАР-БАМИДОФОРМАЛЬДЕГИДНЫХ СВЯЗУЮЩИХ

Изложены результаты исследований по получению древесных пресс-масс на основе карбамидных связующих с применением лигносульфонатов. Показано, что введение 3...5% ЛСТ повышает технологические свойства пресс-масс, но снижает их жизнеспособность.

Технические лигиосульфонаты (ЛСТ) широко применяются в производстве композиционных древесных материалов (КДМ), особенно древесностружечных плит, с целью снижения расхода карбами-

доформальдегидного связующего и повышения качества материалов (снижения токсичности).

Ниже приводятся результаты исследований по влиянию технических лигносульфонатов на свойства другого класса КДМ - масс древесных прессовочных, в частности марки МДПС-М (ГОСТ 11368-89), получаемой на основе карбамидоформальдегидных смол. Основной целью работы ставилось прежде всего повышение технологических свойств (текучести) пресс-масс и возможности прессования из них сложнопрофильных изделий. Известно, что МДПС-М имеют низкую текучесть и недостаточную водостойкость.

В работе были использованы ЛСТ Камского ЦБК (ТУ 13-0281036-029-94). В качестве связующего применена карбамидоформальдегидная смола КФ-О (концентрация 65,5%); наполнитель - древесный опил фракции 5,0/1,5 мм от механической обработки древесины лиственных и хвойных пород с влажностью 6...8%.

Изучали влияние расхода ЛСТ и способа его введения на свойства пресс-массы. Первый способ заключался в приготовлении совмещенного раствора КФ-О и ЛСТ с последующим смешением с опилом. Второй - в раздельном введении лигносульфонатов и смолы. Вначадревесный опил пропитывали разбавленным раствором ЛСТ (концентрация 25%) и подсушивали до влажности менее 10%, а затем смешивали с 55%-м раствором КФ-О. Был применен полный факторный эксперимент (ПФЭ) N=2³. Определяющими факторами приняты расход смолы X_1 (в % от а. с. м. МДП), расход ЛСТ X_2 выбранный по отношению к расходу КФ-О (в % от а.с. м. X_l) и способ введения лигносульфонатов в пресс-массу X_3 За нижний уровень по матрице планирования (-1) принято введение ЛСТ по первому способу (с), за верхний (+1) - по второму способу (р). Пресс-массы подсушивались до влажности 6...8%. Параметрами оптимизации У выбраны технологические свойства (текучесть и предел текучести, определенные по методу деформирования плоского образца между плоскопараллельными плитами [1; 2]) и физико-механические свойства (водопоглощение и прочность при изгибе стандартных образцов).

Результаты испытаний представлены в табл.1. Учитывая, что ЛСТ имели рН = 4,5 и они могут влиять на жизнеспособность кар-бамидного связующего, испытания полученных пресс-масс проводили через сутки после их приготовления и через 7 суток.

Таблица 1 Матрица планирования ПФЭ и результаты испытаний

№ Опыта				Параметры оптимизации Ү				
по мат- рице	Определяющие факторы в натуральном выражении Z ₁			Текучесть D, мм	Предел те- кучести Т _{сд} , МПа	Водопо- глощение за 24 ч В _о , %	Прочность при изгибе о _и , МПа	
	Z ₁ , %	Z2, %	Z_3					
1	11	5	С	71,4/53,7	3,28/11,00	18,5/64,7	53,6/28,6	
2	15	5	С	73,3/53,7	2,91/11,00	19,2/44,4	50,1/25,5	
3	11	10	c	72,4/52,6	3,07/11,40	21,2/82,0	41,5/24,8	
4	15	10	c	72,3/53,6	3,09/11,10	18,4/59,1	37,6/29,7	
5	11	5	P	69,8/54,2	3,96/10,62	25,0/40,6	26,7/34,1	
6	15	5	p	68,4/54,2	3,95/10,62	12,8/41,8	32,4/40,8	
7	11	10	p	72,1/52,8	3,13/11,72	17,6/70,9	30,7/32,0	
8	15	10	р	78,8/52,7	2,10/11,30	9,0/76,4	30,0/38,1	
Коб	15	-	-	55,7/-	9,74/-	25,3/-	45,6/-	

Примечание. K_{06} - контрольные образцы без ЛСТ; в числителе - результаты испытаний через сутки после приготовления пресс-массы, в знаменателе - через 7 суток.

На основании статистической обработки результатов эксперимента (испытания через сутки) и регрессионного анализа на ПЭВМ получены экспериментально-статистические модели зависимости параметров оптимизации от определяющих факторов с учетом значимости коэффициентов регрессий по критерию F.

Уравнения регрессий в кодированных переменных X_I :

$$Y(D) = 72,3+0,9X_1+1,6X_2+0,8X_1X_2+0,4X_1X_3+1,6X_2X_3+1,3X_1X_2X_3;$$
 (1)

$$Y(\tau_{CL}) = 3,14-0,13X_1-0,3X_2-0,12X_1X_2-0,29X_2X_3-0,22X_1X_2X_3;$$
 (2)

$$Y(B_0) = 17, 7 - 2, 9X_1 - 1, 2X_2 - 1, 6X_3 - 2, 3X_2X_3 - 1, 6X_2X_3;$$
(3)

$$Y(\sigma_{\mu}) = 37, 8-2, 9X_2 - 7, 9X_3 + 1, 6X_1X_3 + 3, 3X_2X_3. \tag{4}$$

Проведен анализ результатов эксперимента и графических зависимостей параметров оптимизации от расхода ЛСТ и способа его введения при содержании КФ-О 15% (X_I =1), полученных с применением ПЭВМ на основании уравнений регрессий (1)...(4). На рис. 1 в качестве примера представлена такая поверхность отклика для прочности при изгибе.

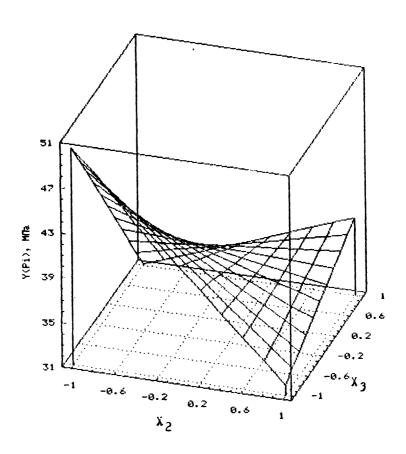


Рис. 1. Зависимость прочности при изгибе КДПМ от содержания ЛСТ (X_2) и способа введения (X_3)

Полученные поверхности отклика показывают, что при максимальном содержании ЛСТ $(X_2=1)$ и раздельном его введении $(X_3=1)$ пресс-масса имеет максимальные текучесть и водостойкость, но низкую прочность при изгибе (в исследуемом интервале факторов). Однако с технологической точки зрения раздельное введение лигносульфонатов малоприемлемо. Приведенные в табл. 1 экспериментальные данные позволяют предположить, что ЛСТ существенно влияют на жизнеспособность пресс-масс на основе карбамидных смол. Через 7 суток после приготовления пресс-композиций как на совмещенном связующем, так и при раздельном введении лигносульфонатов, они практически не обладают текучестью, а водостой-кость снижается в 3,2...3,5 раза. Однако прочность при изгибе при раздельном введении ЛСТ повышается на 20% (опыты 5...8, табл. 1), но все же меньше, чем у контрольных образцов.

Определен оптимальный расход лигносульфонатов (на ПЭВМ с применением соответствующего пакета прикладных программ) для приготовления совмещенного раствора карбамидного связующего. Для модификации пресс-масс на древесном опиле аналогов МДПС-М достаточно введения 3±0,5% ЛСТ, чтобы масса имела текучесть (D) не менее 70 мм, водопоглощение не более 15% и прочность при изгибе не менее 45 МПа.

В работе также изучено влияние введения в пресс-массу дополнительно карбамида, который применяется как пластификатор древесного наполнителя при производстве КДМ [2]. Выл применен ПФЭ $N=2^3$, в котором в качестве третьего определяющего фактора принят расход гарбамида, выбранный по отношению к расходу древесного наполнителя X_3 (в % от а.с. м. древесины). Опил пропитывали 20%-м водным раствором карбамида и высушивали до влажности менее 10%, а затем смешивали с совмещенным раствором карбамидной смолы и ЛСТ. Результаты испытаний представлены в табл. 2.

На основании регрессионого анализа получены следующие уравнения регрессий (в кодированных переменных Xi) с учетом значимости коэффициентов по критерию F:

$$Y(D) = 78,0+1,1X_1+1,4X_3-2,2X_1X_2; (5)$$

$$Y(\tau_{cn}) = 2,24 - 0,17X_1 - 0,21X_3 + 0,3X_1X_2 - 0,1X_1X_2X_3;$$
(6)

$$Y(B) = 21, 2-5, 8X_1 + 1, 9X_2 - 4, 6X_1X_2 - 3, 6X_1X_2X_3$$
(7)

$$Y(\sigma) = 43,7+2,2X_1-2,2X_2+1,3X_3+1,3X_1X_2-3,8X_1X_2X_3.$$
 (8)

На рис. 2 представлена графическая зависимость прочности при изгибе от расхода ЛСТ и карбамида (8) при содержании К Φ -О 15% (X_I =1). Аналогичную поверхность отклика имеет и водопоглощение (7). Полученные поверхности отклика показывают, что при

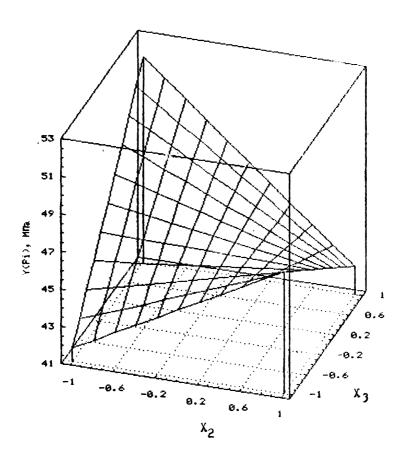


Рис. 2. Зависимость прочности при изгибе КДПМ от содержания ЛСТ (X_2) и карбамидаа (X_3)

Таблица 2 Матрица планирования ПФЭ и результаты испытаний

	матрица планирования пФЭ и результаты испытании												
№ опыта				Параметры оптимизации Ү									
по мат- рице	факто	еляющи ры в нат выраже	ypa-	Текучесть D, мм	Предел текучести т _{ед} , МПа	Водопо- глощение за 24 ч В _о , %	Прочность при изгибе о _и , МПа						
	Z1, %	Z2, %	Z_3										
1	11	5	4	71,4/53,6	3,28/11,10	24,8/60,2	47,7/23,3						
2	15	5	4	80,0/55,5	1,95/9,80	13,9/36,7	42,9/24,2						
3	11	10	4	78,8/53,4	2,10/11,30	30,7/80,4	31,7/26,0						
4	15	10	4	76,0/54,4	2,46/10,50	15,8/72,9	47,2/32,7						
5	11	5	8	77,0/54,0	2,33/10,80	16,9/89,4	42,1/29,5						
6	15	5	8	81,7/56,1	1,78/9,60	22,9/67,0	50,6/26,4						
7	11	10	8	80,2/53,6	1,94/11,10	37,2/60,2	44,2/27,4						
8	15	10	8	78,8/52,7	2,10/11,30	10,3/69,2	43,0/31,9						

минимальном содержании ЛСТ $(X_{\overline{z}}-1)$ и максимальном - карбамида $(X_{\overline{s}}-1)$ (в исследуемом интервале) имеет место увеличение прочности при изгибе и снижение водостойкости.

Также на ПЭВМ проведена оптимизация расходов лигносульфонатов и карбамида для модификации пресс-масс, аналогичных МДПС-М. Можно рекомендовать введение 5±0,5% ЛСТ и 7,5±0,5% карбамида. При этом МДП на древесном опиле фракции 5,0/1,5 мм будет иметь текучесть (D) не менее 80 мм, водопоглощение не более 15% и прочность при изгибе более 45 МПа.

Таким образом, модификация древесных пресс-масс на основе карбамидоформальдегидных смол техническими лигносульфонатами дает возможность повысить их текучесть и водостойкость. Дополнительного эффекта увеличения текучести материала можно достичь совместной модификацией ЛСТ и карбамидом. Однако следует учитывать, что необходимая жизнеспособность таких пресс-масс составляет не более 24 часов.

Литература

- 1. Ставров В.П., Дедюхин В.Г., Соколов А.Д. Технологические испытания реактопластов. М.: Химия, 1981. 248 с.
- 2. Щербаков А.С., Гамова И.А., Мельникова Л.В. Технология древесных композиционных материалов: Учебное пособие для вузов. М.: Экология, 1992. 192 с.

УДК 674.815-041

В.Г. Дедюхин, Н.М. Мухин, Н.В. Конева, И.В. Пичугин (Уральская государственная лесотехническая академия)

ИСПОЛЬЗОВАНИЕ ЛИГНОСУЛЬФОНАТА ТЕХНИЧЕСКОГО ПОРОШКООБРАЗНОГО В КАЧЕСТВЕ ДСВАВКИ К КАРБАМИДОФОРМАЛЬДЕГИДНОЙ СМОЛЕ

Исследованы несколько партий ЛСТП Камского ЦБК. Определена способность к таблетированию ЛСТП, зависимость вязкости и липкости от концентрации.

Путем прессования плитки облицовочной из МДП на основе смолы КФ-МТ-15, модифицированной ЛСТП, определены оптимальное количество ЛСТП в связующем (10%), температура прессования (150°С), время выдержки (7 мин).

С целью изучения возможности замены части карбамидоформальдегидной смолы лигносульфонатом при получении масс древесных прессовочных исследовано несколько партий лигносульфоната технического порошкообразного (ЛСТП) ТУ 13-0281036-15-90, полученных с Камского ЦБК.

Проведены определения сыпучести и таблетируемости ЛСТП. Сыпучесть определялась по ГОСТ 11234-81 на трех партиях с исходной влажностью 5,3; 6,3; 7,4%. В результате средний угол откоса (сыпучесть) получился равным 37°.

Насыпная плотность материала определялась по ГОСТ 11035 и получилась равной 300 кг/м 3 .