- 2. Термомодификация древесных материалов / Р. Г. Сафин, Д. А. Ахметова, А. В. Сафина, Т. О. Степанова // Вестник технологического университета. 2015. Т. 18. В. 22. С. 112-118.
- 3. Обзор исследований по термомодифицированию древесины / Д. А. Ахметова, А. В. Сафина, Т. О. Степанова // Деревообрабатывающая промышленность. 2015. В. 4. С. 28-34.
- 4. Сафина А. В., Хасаншин Р. Р., Сафин Р. Р. Обзор отечественных и зарубежных исследований в области термической обработки древесного наполнителя при производстве композиционных материалов // Вестник Казанского технологического университета. 2015. Т. 18. № 3. С. 194-198.

Научная статья УДК 612.39

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОДЕРЖАНИЯ ВИТАМИНА «С» В РАЗЛИЧНЫХ ПРОДУКТАХ ПИТАНИЯ

Анастасия Андреевна Лобурь¹, Алексей Сергеевич Поликарпов², Екатерина Валериевна Евдокимова³

^{1,2,3} Уральский государственный лесотехнический университет, Екатеринбург, Россия

Анномация. Определено содержание витамина С в различных продуктах питания. Наибольшее содержание витамина С содержится в шиповнике. Плоды черной смородины и квашеной капусты показали практически одинаковые результаты, что составляет около 140 % рекомендуемой суточной нормы.

Ключевые слова: витамин С, квашенная капуста, шиповник, черная смородина

Scientific article

COMPARATIVE ANALYSIS OF VITAMIN C CONTENT IN VARIOUS FOOD

Anastasia A. Lobur', **Alexey S. Polikarpov**, **Ekaterina V. Yevdokimova**1,2,3 Ural State Forestry Engineering University, Yekaterinburg, Russia

_

¹ lastya03@icloud.com

² polikarpov26@icloud.com

³ evdokimovaev@m.usfeu.ru

[©] Лобурь А. А., Поликарпов А. С., Евдокимова Е. В., 2022

¹ lastya03@icloud.com

Abstract. The content of vitamin C in various food has been determined. The highest content of vitamin C is found in rosehip. Black currant berries and sauerkraut show almost the same result, which is about 140 % of the recommended daily allowance.

Keywords: vitamin C, sauerkraut, rosehip, black currant

Витамин С, или аскорбиновая кислота, является одним из важнейших микронутриентов и относится к группе водорастворимых витаминов. Этот витамин в отличие от многих других живых организмов у человека не синтезируется, поэтому обязательно должен присутствовать в нашем питании. Химическая формула витамина С представлена на рисунке.

Химическое строение витамина С

Как видно из химической формулы, витамин С является γ-лактоном 2,3-дегидро-L-гулоновой кислоты, близкой по структуре к глюкозе и может существовать в виде двух оптических изомеров. Витаминной активностью обладает только L-изомер, D-изомер является антивитамином. Кроме того, он может существовать как в окисленной – в виде дегидроаскорбиновой кислоты, так и в восстановленной формах. Обе эти формы проявляют витаминные свойства [1].

Важнейшей биологической функцией витамина С является антиоксидантная, которая обусловлена способностью кислоты переходить в окисленную форму, легко отдавая пару атомов водорода, идущих на связывание свободных радикалов. Так например, аскорбиновая кислота защищает от окисления железо гемоглобина, способствует образованию активных форм фолиевой кислоты, участвует в обезвреживании организма человека от токсинов, антибиотиков и других чужеродных веществ. Наиболее сильное антиоксидантное воздействие витамина С проявляется совместно с ви-

² polikarpov26@icloud.com

³ evdokimovaev@m.usfeu.ru

тамином Е. Обнаружено антиканцерогенное действие аскорбиновой кислоты, которое основано на предотвращении образования сильных канцерогенов из нитритов и аминов под действием кислой среды желудка человека [2]. Особенно это важно тем, кто предпочитает употреблять мясо в виде колбас и копченостей, в производстве который используется селитра. Для них наша рекомендация — употреблять такие продукты с большим количеством зелени, богатой витамином С.

Кроме того, данный витамин регулирует иммунологические реакции, повышает иммунитет к различным инфекциям. Недостаточность витамина С приводит к развитию гиповитаминоза, в запущенных случаях – к авитаминозу.

Поэтому важно поддерживать необходимый уровень витамина С в организме за счет регулярного употребления в пищу продуктов, богатых этим витамином.

Целью данной работы является количественное определение содержания аскорбиновой кислоты в различных продуктах. В качестве объектов исследования нами были выбраны плоды шиповника, ягоды черной смородины и квашеная капуста.

В настоящее время существует достаточно много методов качественного и количественного анализа витамина С. Учитывая интенсивную окраску плодов шиповника и ягод черной смородины, некоторые методы неприемлемы. Так например, при использовании реактива Тильманса (2, 6-дихлорфенолиндофенол натрия) аскорбиновая кислота, восстанавливая реактив, изменяет синее окрашивание до розового (избыток реактива Тильманса в кислой среде), и обнаружить окончание реакции невозможно. Поэтому в работе был выбран йодометрический метод, который основывается на взаимодействии витамина С с иодом. Раствор иода (I_2) способен окислять аскорбиновую кислоту с образованием бесцветной дегидроаскорбиновой кислоты, ионов водорода и иодид-ионов I^- :

$$I_2$$
 (водн.) + $C_6H_8O_6$ (водн.) $\rightarrow C_6H_6O_6$ (водн.) + $2H^+$ (водн.) + $2I^-$ (водн.).

Избыток иода определяют титрованием раствором тиосульфата натрия в присутствии крахмала:

$$2Na_2S_2O_3 + I_2 = Na_2S_4O_6 + 2NaI.$$

Анализ выполнялся методом титрования: постепенное добавление известного количества одного из реагентов к другому до тех пор, пока определяемое вещество не прореагирует полностью. В этот момент происходит изменение цвета или какой-либо другой характеристики. Таким образом, появление устойчивой синей окраски означает конец титрования

Результаты исследований представлены в табл. 1.

Вид образца	Количество витамина С, мг %
Плоды черной смородины	107
Шиповник	179
Квашеная капуста	103

Рекомендуемое ВОЗ потребление витамина С для разных групп населения представлено в табл. 2.

 $\begin{tabular}{ll} \it Tаблица~2 \\ \it Pекомендуемая суточная потребность в витамине C \end{tabular}$

Категория	Возраст (лет)	Суточное потребление витамина С, мг/сут
Грудные дети	0-0,5	30
	0,5-1	35
Дети	1-3	40
	4-6	45
	7-10	45
Мужчины и женщины	11-14	50
	15-18	60
	19-24	60
	25-50	60
	51 и старше	60
В период беременности	•	70
В период лактации		95

Видно, что наиболее высокое содержание витамина С наблюдается в плодах шиповника, однако употреблять такое количество шиповника ежедневно не всегда возможно. Пополнить суточную потребность можно употребляя не менее 60 г ягод черной смородины или квашеной капусты.

На основании проведенных исследований можно, сделать следующие выводы:

- 1. Чтобы оставаться здоровым, человеку необходимо ежедневно пополнять запас витамина С, употребляя продукты с высоким его содержанием.
- 2. Наибольшее содержание витамина С содержится в шиповнике. Плоды черной смородины и квашеной капусты показали практически одинаковые результаты, что составляет около 140 % рекомендуемой суточной нормы.
- 3. Зимой и весной, когда свежих овощей и фруктов мало, а в тех растительных продуктах, которые продаются круглогодично, аскорбиновой кисло-

ты гораздо меньше, чем в свежесобранных, дефицит витамина С проявляется особенно ярко, мы рекомендуем употреблять квашенные продукты.

Список источников

- 1. Свойства витамина С. Эвалар № 1 в России. URL: https://shop.evalar.ru/encyclopedia/item/vitamin-c/
- 2. Значение для человека и пищевой промышленности. ФБУЗ «Центр гигиенического образования населения» Роспотребнадзора. URL: http://cgon.rospotrebnadzor.ru/content/62/1914/

Научная статья УДК 630.233

ПОЛУЧЕНИЕ И СВОЙСТВА КОМПОЗИТОВ НА ОСНОВЕ КАРБОКСИМЕТИЛЦЕЛЛЮЛОЗЫ И ДРЕВЕСНОЙ МУКИ

Шаноза Раджамадовна Мамадгулова¹, Павел Сергеевич Захаров², Виктор Владимирович Глухих³, Алексей Евгеньевич Шкуро⁴

^{1,2,3} Уральский государственный лесотехнический университет, Екатеринбург, Россия

Анномация. В данной работе получены и исследованы физикомеханические свойства композиционных материалов на основе карбоксиметилцеллюлозы и древесной муки в качестве наполнителя.

Ключевые слова: биоразлагаемые композиты, наполнитель, древесная мука, карбоксиметилцеллюлоза, свойства

_

¹ mamadgulovas@mail.ru

² zaharovps@m.usfeu.ru

³ gluhihvv@m.usfeu.ru

⁴ shkuroae@m.usfeu.ru

[©] Мамадгулова III. Р., Захаров П. С., Глухих В. В., Шкуро А. Е., 2022