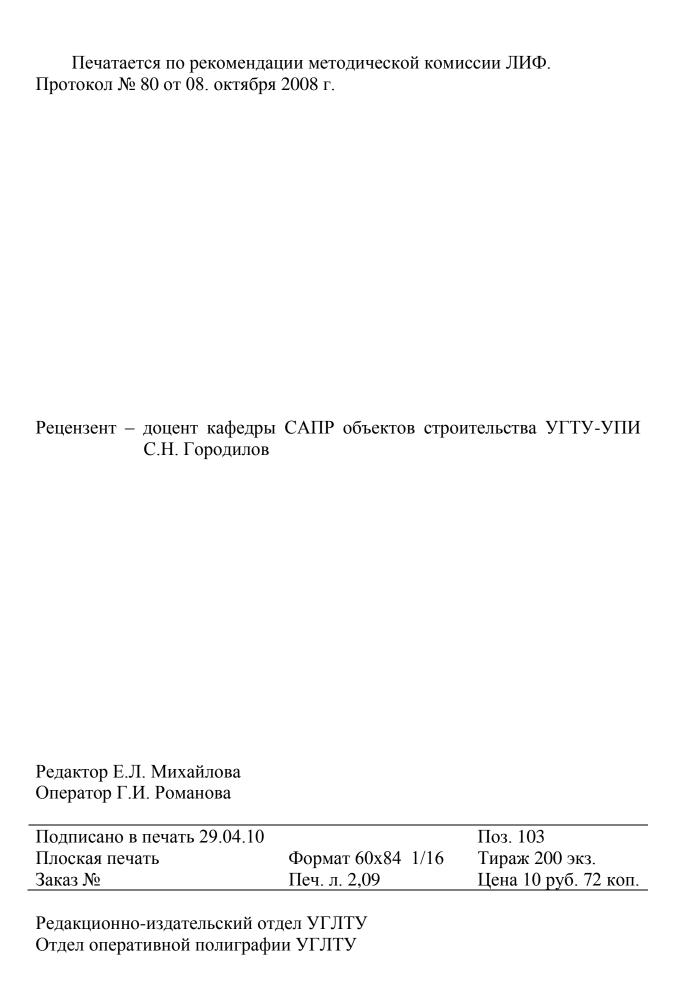
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра сопротивления материалов и теоретической механики


С. А. Одинцева И. В. Коцюба

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Методические указания для выполнения расчетно-графических работ студентами заочного факультета всех специальностей

ЧАСТЬ 2

Екатеринбург 2010

ОБЩИЕ ПОЛОЖЕНИЯ И УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКИХ РАБОТ

Целью расчетно-графических работ (РГР) является закрепление теоретического материала по дисциплине, приобретение опыта выполнения расчетов на прочность простых элементов конструкций и навыков в работе с технической литературой, справочниками, стандартами.

Количество работ, объем каждой и сроки выполнения определяются кафедрой в соответствии с программой по учебной дисциплине и учебным графиком.

Студент должен взять для каждой задачи из таблицы и рисунка данные в соответствии с номером своего шифра. Последняя цифра шифра соответствует схеме, предпоследняя – данным к задаче.

Работы, выполненные с нарушением этих указаний, рассматриваться не будут.

В чертежах должны быть проставлены числовые данные соответствующего варианта (не буквенные значения!). Расчеты производить только с числовыми значениями.

Каждую контрольную работу следует выполнять в отдельной тетради чернилами, четким почерком, с полями 5 см для замечаний рецензента.

Перед решением задачи необходимо выписать полностью ее условие с числовыми данными. Чертежи и схемы в текстовой части выполняются в карандаше в соответствии с требованиями Единой системы конструкторской документации (ЕСКД). Все графики и эпюры должны содержать числовые величины в характерных точках и размерность.

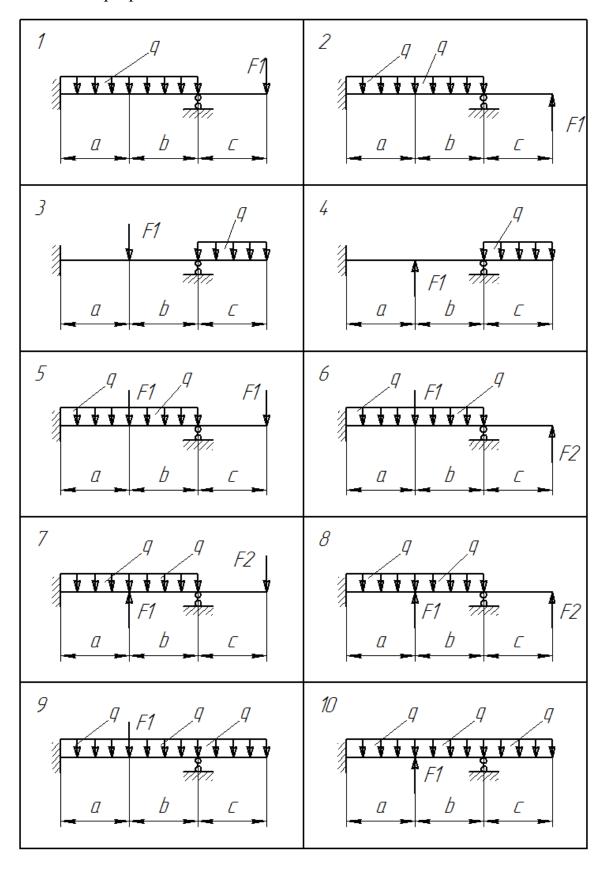
Решение должно сопровождаться последовательными и грамотными объяснениями. При использовании формул или данных следует кратко и точно указать источник (автора, название издания, страницу, номер формулы).

Необходимо указывать размерность всех величин и подчеркивать окончательные результаты. Решения производить в международной системе единиц (СИ). Основные единицы приведены в приложении.

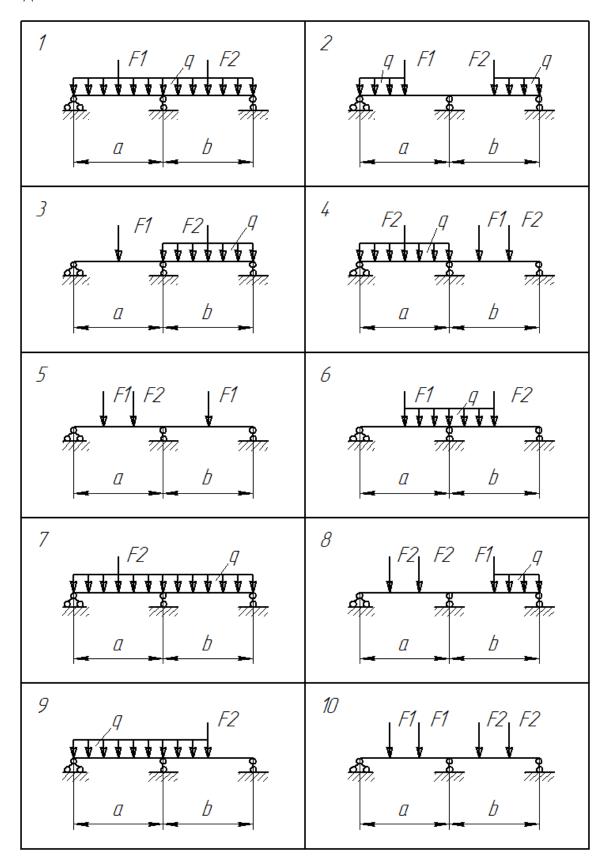
При возврате контрольной работы студент должен исправить указанные ошибки. Все исправления выполняются на отдельных листах, которые должны быть вложены в соответствующие места рецензированной работы. Отдельно от работы исправления не принимаются.

5. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

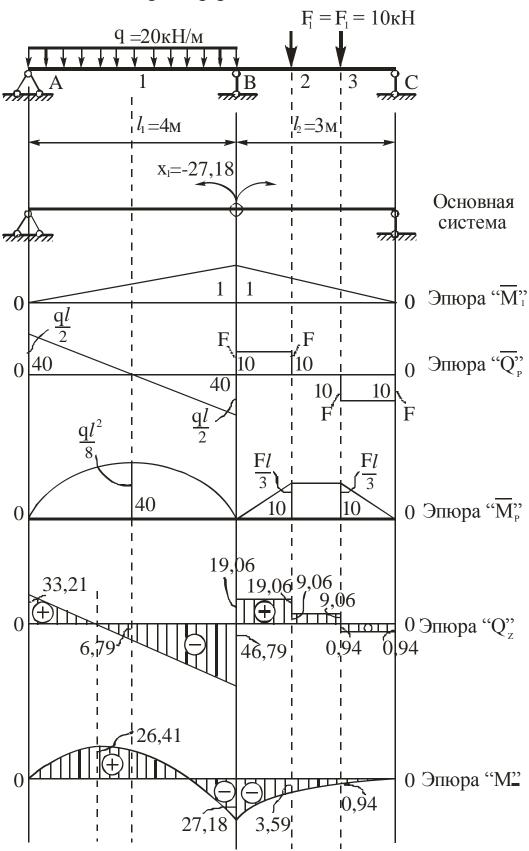
Условие и порядок выполнения работы


Для заданных схем балок необходимо:

- 1) раскрыть статическую неопределимость. Методы, применяемые для раскрытия статической неопределимости балок, задаются преподавателем;
- 2) определить перемещения от действующих нагрузок. Составить каноническое уравнение;
 - 3) построить эпюры суммарных поперечных сил, изгибающих моментов;
- 4) в задачах № 5, 5^a точку приложения одной сосредоточенной силы, если не указано на схеме, необходимо принять в середине пролета. При действии двух сил пролет делится на три равных участка;
 - 6) исходные данные для решения задания (вариант) берутся из табл. 5.


Таблица 5 Исходные данные к заданиям 5, 5^a

Вариант	За	данная нагр	рузка	Длины участков, м			
	F ₁ , кН	F ₂ , кН	q, кH/м	a	В	c	
1	10	18	10	6,0	4,0	2,4	
2	12	20	14	6,2	4,2	2,5	
3	14	22	16	6,4	4,4	2,6	
4	15	24	18	6,5	4,5	2,8	
5	16	26	20	6,6	4,6	3,0	
6	18	28	22	6,8	4,8	3,2	
7	20	30	24	7,0	5,0	3,4	
8	22	32	26	7,2	5,2	3,5	
9	24	34	28	7,4	5,4	3,6	
10	25	36	30	7,5	5,5	3,8	


Задача 5. Неразрезные балки

Задача 5^а

Пример решения задачи 5

Особенность задачи

Реакции (а значит, и внутренние усилия и напряжения) нельзя определить с использованием только уравнений статики (уравнений равновесия). Это объясняется наличием «лишних» связей. Каково число этих связей — такова и степень статической неопределимости. Следует подчеркнуть, что степень статической неопределимости не зависит от вида нагрузки, а есть свойство самой системы.

Статически неопределимые задачи можно решить только с помощью дополнительных уравнений. Их обычно называют деформационными уравнениями (реже – уравнениями совместности деформаций). В сущности, это уравнения перемещений, так как выражают зависимость между перемещениями точек деформированной конструкции. Число этих дополнительных уравнений должно соответствовать статической неопределимости системы.

Установить степень статической неопределимости системы можно двумя путями:

- формальным как разность между количеством искомых усилий и числом независимых уравнений статики;
- практическим последовательным отбрасыванием «лишних» связей до образования *статически определимой* системы, которая называется основной системой. Здесь важно «не перестараться», ибо основная система должна быть *кинематически неизменяемой* (если все оставшиеся элементы считать абсолютно твердыми, то система не должна превратиться в механизм).

В результате решения деформационных уравнений *определяются усилия в «лишних» связях*, а это значит, что **статическая неопределимость будет раскрыта**. Далее задача решается обычным образом (она как бы стала статически определимой). Следует подчеркнуть, что составление деформационных уравнений в отличие от уравнений равновесия требует учета особенностей, «специфики» данной системы — в этом обычно и заключаются трудности при решении задач этого типа.

Итак, *общий порядок* решения статически неопределимых задач предлагается такой:

- 1) устанавливаем степень статической неопределимости;
- 2) составляем исходную и деформированную системы;
- 3) строим эпюры единичных векторных моментов;
- 4) строим эпюры внутренних изгибающих моментов и поперечных сил на каждом участке системы;
- 5) составляем деформационные уравнения (их столько, какова степень статической неопределимости);
- 6) строим эпюры суммарных поперечных сил и внутренних изгибаюших моментов.

Решение

1. Определение степени статической неопределимости по формуле S = n + 3m + 2k - 3,

где n - число опорных реакций;

m - число замкнутых контуров, которые представляют собой жестко связанную цепь стержней;

k - количество внутренних (врезанных) шарниров.

$$S = 4 - 3 = 1$$
.

Данная балка однажды статически неопределима.

- 2. Строим эпюры единичных векторных моментов.
- 3. Определяем и строим эпюры внутренних изгибающих моментов и поперечных сил на каждом участке, действующих от единичной силы.
- 4. Определяем перемещения от действующих нагрузок. Составляем каноническое уравнение по методу сил.

Так как балка однажды статически неопределимая, уравнение будет одно:

$$\delta_{11} x_1 + \Delta_{1p} = 0$$
,

где δ_{11} - перемещение от точки приложения первого лишнего неизвестного по собственному направлению, вызванное действием силы этого же неизвестного;

 $\Delta_{_{1p}}$ - перемещение в том же месте в том же направлении, но вызванное нагрузкой;

 $\delta_{_{11}} x_{_{1}}$ - перемещение той же точки по тому же направлению, вызванное силой $x_{_{1}}$.

$$\delta_{11} = \frac{1}{EI_{x}} \cdot \left(\frac{1}{2} \cdot 4 \cdot 1 \cdot \frac{2}{3} + \frac{1}{2} \cdot 3 \cdot 1 \cdot \frac{2}{3}\right) = 2,33/EI_{x},$$

$$\Delta_{1p} = \frac{1}{EI_{x}} \cdot \left(\frac{2}{3} \cdot 4 \cdot 40 \cdot \frac{1}{2} + \frac{1+3}{2} \cdot 3 \cdot 10 \cdot \frac{1}{2}\right) = 63,33/EI_{x}.$$

5. Определение неизвестных опорных моментов x_1 :

$$2,33 x_1 + 63,33 = 0,$$

 $x_1 = -27,18\kappa H \cdot M.$

6. Определение и построение эпюр суммарных поперечных сил на каждом участке:

$$\begin{aligned} Q_{\sum} &= Q_p + \Delta Q, \\ \Delta Q &= \frac{M_n - M_{n-1}}{l_n}, \end{aligned}$$

$$\Delta Q_{AB} = \frac{-27,18-0}{4} = -6,79\kappa H,$$

$$\Delta Q_{BC} = \frac{0-(-15,74)}{3} = 9,06\kappa H.$$

Участок АВ
$$\begin{aligned} n &= 40 + (-6,79) = 33,21 \kappa H \\ Q_1^n &= 0 + (-6,79) = -6,79 \kappa H \\ Q_1^n &= 0 + (-6,79) = -6,79 \kappa H \\ Q_B^n &= -40 + (-6,79) = -46,79 \kappa H \end{aligned}$$

 $Q_B^n = 10 + 9,06 = 19,06\kappa H$ $Q_2^n = 10 + 9,06 = 19,06\kappa H$ $Q_2^n = 0 + 9,06 = 9,06\kappa H$ $Q_3^n = 0 + 9,06 = 9,06\kappa H$ $Q_3^n = -10 + 9,06 = -0,94\kappa H$ $Q_C^n = -10 + 9,06 = -0,94\kappa H$

Участок ВС

7. Проверка:
$$\sum F(y) = \sum |Q_{Ha\ onopax}|$$

8. Определение и построение эпюр суммарных внутренних изгибающих моментов в каждой точке:

$$M_{\sum} = M_{p} + \sum M_{n} x_{n},$$

$$M_{A} = 0 + 0 = 0,$$

$$M_{1} = 40 + \frac{1}{2}(-27,18) = 26,41 \,\kappa H_{M},$$

$$M_{B} = 0 + 1 \cdot (-27,18) = -27,18 \,\kappa H_{M},$$

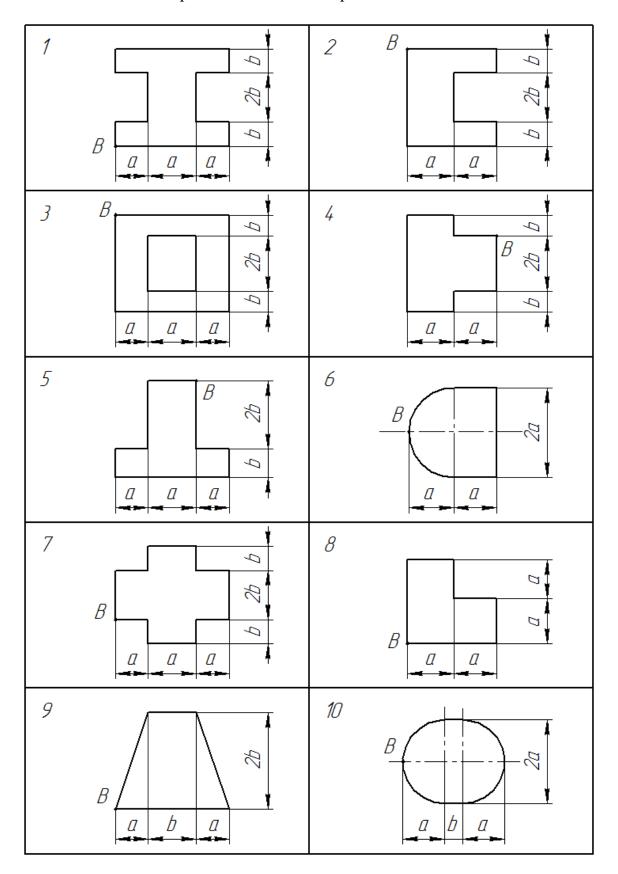
$$M_2 = 10 + \frac{1}{2}(-27,18) = -3,59 \,\kappa H_M,$$

 $M_3 = 10 + \frac{1}{3}(-27,18) = -0,94 \,\kappa H_M,$
 $M_c = 0 + 0 = 0.$

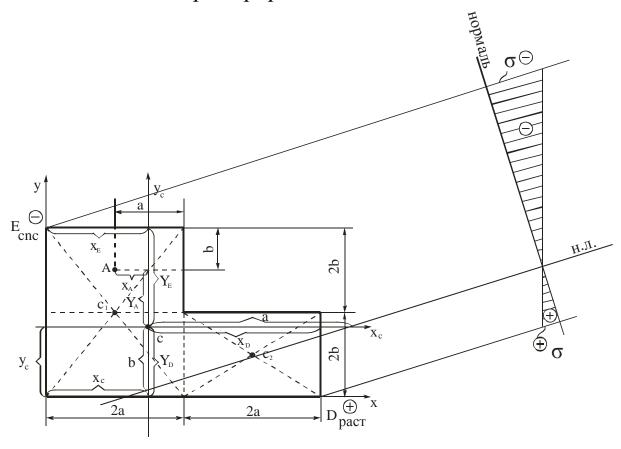
6. ВНЕЦЕНТРЕННОЕ РАСТЯЖЕНИЕ (СЖАТИЕ) ПРЯМЫХ СТЕРЖНЕЙ

Условия и порядок выполнения работы

Чугунный стержень нагружен в точке A сжимающей силой F, действующей параллельно его оси.


Требуется вычислить, выражая величины напряжения через \boldsymbol{F} и размеры сечения:

- наибольшее растягивающее напряжение в поперечном сечении;
- наибольшее сжимающее напряжение в поперечном сечении.
 - 1. Показать на чертеже положение нейтральной линии.
- 2. Показать на чертеже положение точки, в которой действует наибольшее растягивающее напряжение.
- 3. Показать на чертеже положение точки, в которой действует наибольшее сжимающее напряжение.
- 4. Из условия прочности определить допускаемую нагрузку при заданных размерах поперечного сечения стержня.
- 5. Расчет производить по допускаемым напряжениям на сжатие и растяжение.
 - 6. Исходные данные для решения задачи берутся из табл. 6.


Таблица 6 Исходные данные к заданию 6

Вари-	Размеры с	сечения, см	Допускаемые напряжения, σ ,МПа			
ант	a	В	сжатие	растяжение		
1	4	3	60	20		
2	5	4	70	22		
3	6	5	80	23		
4	7	6	90	24		
5	8	7	100	25		
6	9	8	110	26		
7	10	9	120	27		
8	11	10	130	28		
9	12	11	140	29		
10	13	12	150	30		

Задача 6. Схемы поперечного сечения стержней

Пример решения задачи 6

Дано: в = a = 7 см; 6 см; $[\sigma]^- = 70$ МПa = 70 000 к H/M^2 ; $[\sigma]^+ = 28$ МПa = 28 000 к H/M^2

Определить:
$$A_{\Sigma}$$
; x_{c} ; y_{c} ; $I_{x_{c}}$; $I_{y_{c}}$; $i_{x_{c}}^{2}$; $i_{y_{c}}^{2}$; a ; a ; a ; σ^{-} ; σ^{+} ; $[F_{cm}]$; δ

Решение

1. Определение суммарной площади сечения стержня. Для решения задачи разбиваем стержень на простейшие фигуры A_1 и A_2 :

$$A_{\Sigma} = A_{\rm l} + A_{\rm l} \, ,$$

$$A_{\rm l} = 2 {\rm a} \cdot 4 {\rm b} = 8 a {\rm b} = 336 {\rm cm}^2 \, ; \qquad A_{\rm l} = 2 {\rm a} \, 2 {\rm b} = 4 a {\rm b} = 168 {\rm cm}^2 \, ;$$

$$A_{\Sigma} = 504 {\rm cm}^2 \, .$$

2. Определение координат центра тяжести всей сложной фигуры (положение центральных осей):

$$y_c = \frac{\sum S_x}{\sum A} = \frac{y_1 \frac{A_1 + y_2}{A_2} \frac{A_2}{2}}{\frac{A_1 + A_2}{A_2}} = 10 \text{cm}; \quad x_c = \frac{\sum S_y}{\sum A} = \frac{x_1 \frac{A_1 + x_2}{A_2} \frac{A_2}{2}}{\frac{A_1 + A_2}{A_2}} = 11,6 \text{cm},$$

где $x_1; x_2$ - расстояние от центра тяжести фигуры до вспомогательной оси по оси x;

 y_1, y_2 - расстояние от центра тяжести фигуры до вспомогательной оси по оси y .

3. Определение осевых моментов инерции всей фигуры относительно центральных осей:

$$I_{x_{c}} = \frac{bh^{3}}{12} = \frac{4a \cdot (4b)^{3}}{12} - \frac{2a \cdot (2b)^{3}}{12} = 30240cM^{4},$$

$$I_{y_{c}} = \frac{b^{3}h}{12} = \frac{(4a)^{3}4b}{12} - \frac{(2a)^{3}2b}{12} = 41160cM^{4}.$$

4. Определение радиусов инерции относительно центральных осей:

$$i_{x_{c}}^{2} = \frac{I_{x_{c}}}{A_{\sum}} = 60cM^{2};$$
 $i_{y_{c}}^{2} = \frac{I_{y_{c}}}{A_{\sum}} = 81,67cM^{2}.$

5. Определение положения нулевой линии.

Правило построения нулевой линии

- *Нулевая линия* всегда располагается напротив точки приложения нагрузки m. A и за центром тяжести всей фигуры m.C.
- Нулевая линия и силовая плоскость располагаются в смежных квадрантах.
- Отрезки (a; s), отсекаемые *нулевой линией*, откладываются на центральных осях от центра тяжести всей фигуры m.C.

$$a = \frac{i_{y}^{2}}{X_{A}} = 17,75cm;$$
 $e = \frac{i_{x}^{2}}{Y_{A}} = 7,5cm,$

где X_A ; Y_A - расстояние от точки приложения нагрузки m.A до центральных осей.

$$X_A = x_C - a = 4,6cM,$$

 $Y_A = 3B - y_C = 8cM,$

проводим *нулевую линию* и к ней под углом 90^{0} проводим *нормаль*.

• Определяем наиболее удаленные точки от нулевой линии т. Д и т.Е.

6. Определение максимально сжимающих и максимально растягивающих нормальных расчетных напряжений в $m.\mathcal{I}$ и m.E.

Для общего случая используется формула

$$\sigma^{\pm} = -\frac{F}{A} \pm \frac{M}{I_{x}} Y \pm \frac{M}{I_{y}} X \leq [\sigma]^{\pm},$$

$$\sigma^{-}_{E} = -\frac{F}{A} - \frac{F |V_{A}||V_{E}|}{I_{x_{c}}} - \frac{F |X_{A}||X_{E}|}{I_{y_{c}}} [\sigma]^{-},$$

$$F^{-} = \frac{70000}{-\frac{1}{A_{\sum}}} - \frac{|V_{A}||V_{E}|}{I_{x_{c}}} - \frac{|X_{A}||X_{E}|}{I_{y_{c}}} [\sigma]^{+},$$

$$\sigma^{+}_{\mathcal{A}} = -\frac{F}{A} + \frac{F |V_{A}||V_{\mathcal{A}}|}{I_{x_{c}}} + \frac{F |X_{A}||X_{\mathcal{A}}|}{I_{y_{c}}} [\sigma]^{+},$$

$$F^{+} = \frac{28000}{-\frac{1}{A_{\sum}}} + \frac{|V_{A}||V_{\mathcal{A}}|}{I_{x}} + \frac{|X_{A}||X_{\mathcal{A}}|}{I_{y}} = 1126\kappa H$$

где $X_E; X_{\mathcal{A}}; Y_E; Y_{\mathcal{A}}$ - расстояния от наиболее удаленных точек E и \mathcal{A} до центральных осей соответственно.

Выбираем минимальное значение силы и подставляем в уравнение для m. E, т.к. в целом стержень работает на сжатие:

$$\sigma_{E}^{-} = -\frac{F}{A} - \frac{F|Y_{A}||Y_{E}|}{I_{x_{C}}} - \frac{F|X_{A}||X_{E}|}{I_{y_{C}}} = -70021\kappa H M^{2} - 70M\Pi a.$$

7. Определение погрешности:

$$\delta = \frac{\sigma_{pacu} - [\sigma]}{\sigma_{pacu}} 100 = 0,000\%.$$

7. ОДНОВРЕМЕННОЕ ДЕЙСТВИЕ КРУЧЕНИЯ И ИЗГИБА

Условия и порядок выполнения

Стальной вал передает крутящий момент в соответствии с заданной схемой при помощи ременной передачи.

Ведущий шкив диаметром D_I передает мощность N кВт при заданном числе оборотов в минуту.

Два других ведомых шкива передают мощность N/2 кВт каждый.

Их диаметры соответственно равны

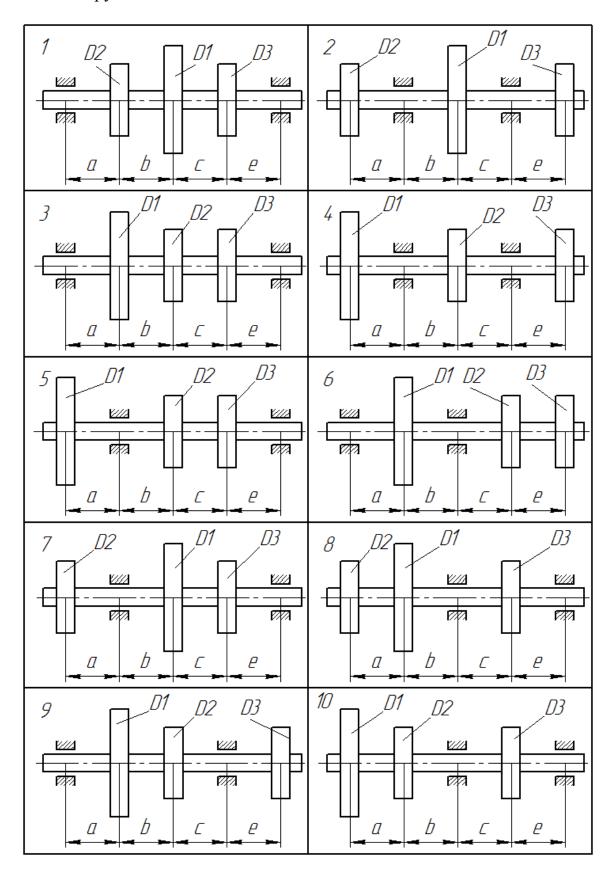
$$D_2=0.6D_1$$
; $D_3=0.4D_1$.

Отношение натяжений ведущей и ведомой ветвей ремня составляет T=2t.

Ведомые шкивы имеют одинаковые углы наклона ветвей ремня.

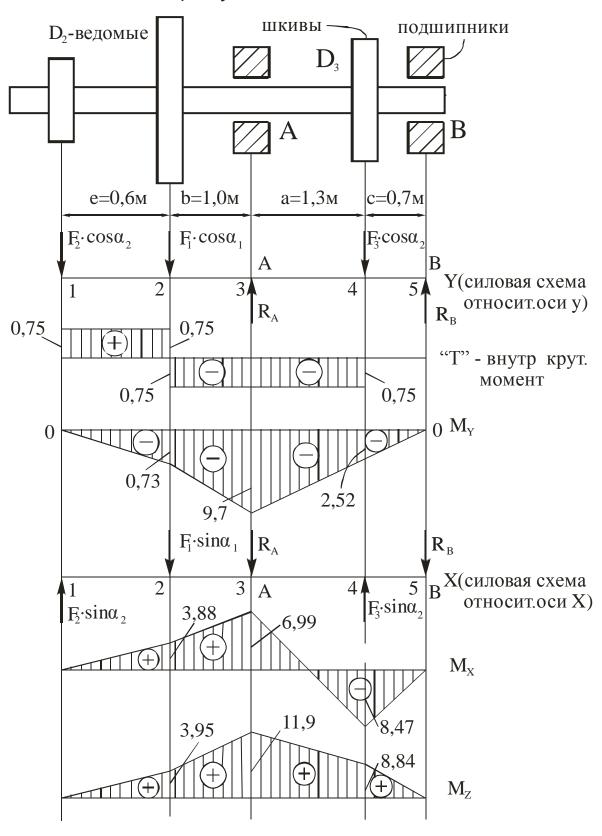
В процессе расчета необходимо:

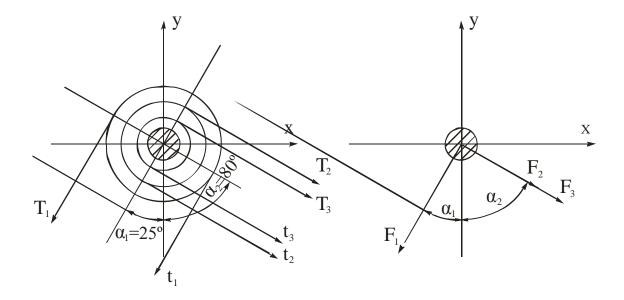
- 1) определить усилия натяжения ремней;
- 2) построить эпюры крутящих моментов в двух взаимно перпендикулярных плоскостях;
- 3) построить эпюры изгибающих моментов в двух взаимно перпендикулярных плоскостях.


При построении эпюр изгибающих моментов вал рассматриваем как балку на двух опорах в точках установки подшипников.

Исходные данные для решения задания берутся из табл. 7.

Таблица 7 Исходные данные к заданию 7


	HT CTb,	N, кВт Число обо- ротов в мин., п	обо- мин., тр его Вго D,м	Длиг	ны уча	стков	вала,	Углы наклона ремней,	
HT				dr. d. M. M.				град	
Вариант	Мощность, N, кВт			Диаметр ведущего шкива, D,	a	В	c	e	$\lambda_{_{1}}$
1	10	400	1,0	0,8	1,2	1,0	0,6	10	20
2	15	450	1,1	1,0	1,3	1,1	0,7	15	25
3	20	500	1,2	1,1	1,4	1,2	0,8	20	30
4	25	550	1,3	1,2	1,5	1,3	0,9	25	35
5	30	600	1,4	1,3	1,6	1,4	1,0	30	40
6	35	650	1,5	1,4	1,7	1,5	1,1	35	45
7	40	700	1,6	1,5	1,8	1,6	1,2	40	50
8	45	750	1,7	1,6	1,9	1,7	1,3	45	55
9	50	800	1,8	1,7	2,0	1,8	1,4	50	60
10	55	850	1,9	1,8	2,1	1,9	1,5	55	65


Задача 7. Кручение и изгиб вала

Пример решения задачи 7

 D_1 -ведущий

Дано:
$$N=30\kappa Bm; n=190oбмин; D_1=0,7м; D_2=0,6D_1; D_3=0,4D_1; a=1,3m; b=1,0m; c=0,7m;$$

$$e = 0,6$$
м; $\alpha_1 = 25^0$; $\alpha_2 = 80^0$; $[\sigma] = 80$ МПа

Определить:
$$T_1; T_2; T_3; t_1; t_2; t_3; F_1; F_2; F_3; M_1; M_2; M_3; M_{\Sigma}; d = ?$$

Решение

Вал испытывает два вида деформаций: кручение и изгиб.

Рассматриваем вал как балку на двух опорах. Опоры ставим в местах усадки подшипников, а усилия – в местах усадки шкивов.

Правило построения силовых схем относительно осей X и У

- В силовых схемах относительно осей X и Y направления усилия F_1 от ведущего шкива D_1 оставлять постоянным для осей X и Y сверху вниз.
- Усилия F_2 и F_3 и реакции опор R_A и R_B менять местами для каждой из осей.
- 1. Определение внутренних крутящих моментов, которые создает электродвигатель на шкивах:

$$T_1 = \frac{N}{\omega} = \frac{30}{2\Pi} = \frac{30 \cdot 30}{3,14 \cdot 190} = 1,5\kappa H \cdot M.$$

Так как из условия задачи два других ведомых шкива передают мощность $\frac{N}{2}$, то $T_2 = T_3 = \frac{T_1}{2} = 0.75 \kappa H \cdot \text{м}$.

2. Определение усилий натяжения ремней на каждом шкиве, т.е. набе-гающее усилие равно сбегающему, но с учетом силы на плечо:

$$T_1 = t_1 \frac{D_1}{2} \Rightarrow t_1 = \frac{2T_1}{D_1} = 4.3\kappa H$$

$$T_2 = t_2 \frac{D_2}{2} \Rightarrow t_2 = \frac{2T_2}{D_2} = 3,6\kappa H; \quad T_3 = t_3 \frac{D_3}{2} \Rightarrow t_3 = \frac{2T_3}{D_3} = 5,4\kappa H.$$

3. Определение усилий, возникающих на валу:

$$F_1 = 2t_1 = 8.6\kappa H$$
; $F_2 = 2t_2 = 7.2\kappa H$; $F_3 = 2t_3 = 10.8\kappa H$.

- 4. Определение и построение эпюр внутренних изгибающих моментов методом сечения относительно оси Y:
 - определение опорных реакций:

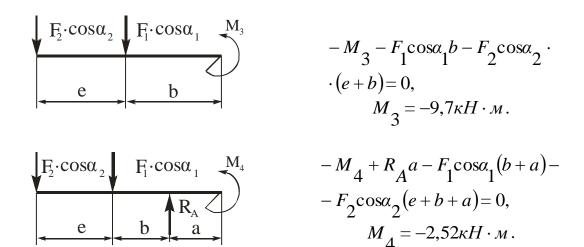
$$\sum M(A)=0$$
.

$$-F_{1}\cos a_{1}\ b - F_{2}\cos a_{2}\ (e+b) + F_{3}\cos a_{2}\ a - R_{B}(a+c) = 0,$$

$$R_{B} = -3.6\kappa H,$$

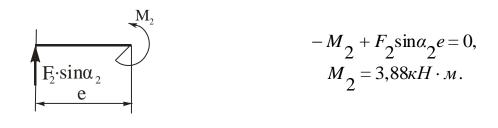
$$\sum M(B)=0$$
,

$$-F_{3}\cos \alpha_{2}c + R_{A}(a+c) - F_{1}\cos \alpha_{1}(b+a+c) - F_{2}\cos \alpha_{2}(e+b+a+c) = 0,$$


$$R_A = 14,45\kappa H$$
;

- находим внутренние изгибающие моменты методом сечения:

$$F_{2} \cdot \cos \alpha_{2} \qquad M_{2}$$


$$-M_{2} - F_{2} \cos \alpha_{2} e = 0,$$

$$M_{2} = -0.73\kappa H \cdot M.$$

- 5. Определение и построение эпюр внутренних изгибающих моментов методом сечения относительно оси X:
 - определение опорных реакций:

- находим внутренние изгибающие моменты методом сечения

$$F_{1} \cdot \sin \alpha_{1} \qquad -M_{3} - F_{1} \sin \alpha_{1} b + F_{2} \sin \alpha_{2} \cdot (e+b) = 0.$$

$$M_{3} = 6.9 \kappa H \cdot M.$$

6. Определение и построение эпюр суммарных изгибающих моментов из условия прочности по 3-й гипотезе прочности в точках:

$$M_{\sum(2)} = \sqrt{M_{x(2)}^2 + M_{y(2)}^2} = 3,95\kappa H \cdot \text{м}\,,$$

$$M_{\sum(3)} = \sqrt{M_{x(3)}^2 + M_{y(3)}^2} = 11,9\kappa H \cdot \text{м} \, - \text{опасная точка},$$

$$M_{\sum(4)} = \sqrt{M_{x(4)}^2 + M_{y(4)}^2} = 8,84\kappa H \cdot \text{м}\,.$$

7. Определение диаметра вала по 3-й гипотезе прочности с выбором максимально опасной точки на эпюре суммарных изгибающих моментов и использованием минимального крутящего момента:

$$\begin{split} \sigma_{red} &= \frac{\sqrt{M_{\sum (\max)}^2 + T_{\min}^2}}{W_x} \leq [\sigma], \\ W_x &= \frac{\sqrt{M_{\sum (\max)}^2 + T_{\min}^2}}{[\sigma]}; \quad W_x &= \frac{\sqrt{(11.9)^2 + (0.75)^2}}{80 \cdot 10^3} = 1.5 \cdot 10^{-4} \, \text{m}^3, \\ W_x &= \frac{\Pi \cdot d^3}{32}; \qquad \qquad d = \sqrt[3]{\frac{32W_x}{\Pi}} = 0.153 \text{m} \approx 15 \text{cm}. \end{split}$$

8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ

Условия и порядок выполнения

Стальной стержень постоянного сечения сжимается силой \boldsymbol{F} , направленной вдоль центральной оси.

Необходимо:

1) в задании в произвольном масштабе показать схему нагрузки стержня и его поперечное сечение.

На чертеже сечения нанести также все необходимые размеры и оси;

2) расчет производить с помощью эмпирической формулы путем последовательных приближений. Предварительно требуется задаться величиной коэффициента $\mathcal P$ или непосредственно размерами поперечного сечения (профиля).

Способ закрепления принять одинаковым для всех возможных плоскостей изгиба;

3) определить размеры заданного поперечного сечения из условия устойчивости прямолинейной формы стержня.

Допускаемое напряжение (в строительной механике – расчетное сопротивление) зависит от механических характеристик стали и условия эксплуатации конструктивного элемента;

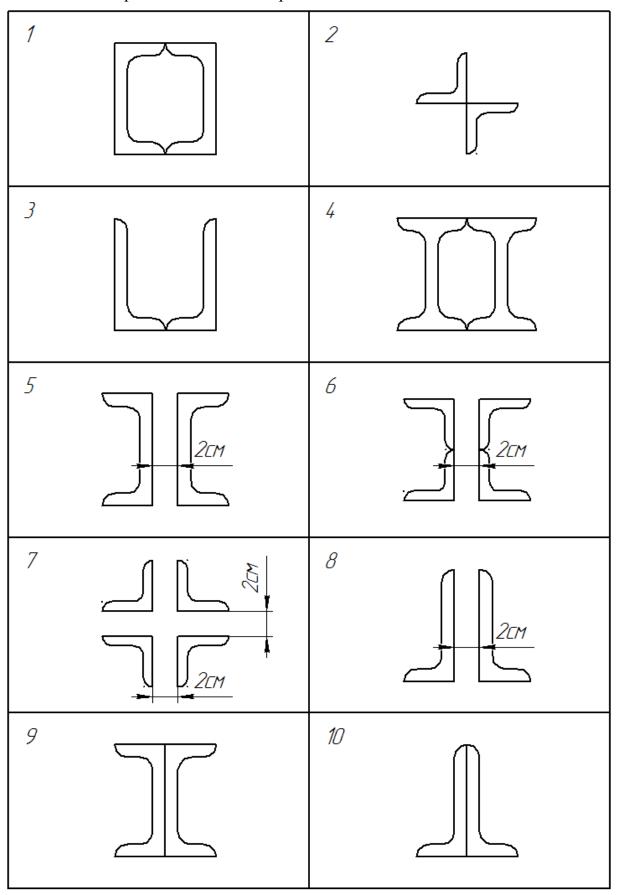
4) Значения коэффициента уменьшения допускаемого напряжения φ берутся из табл.8 для соответствующего допускаемого напряжения.

Исходные данные для решения задания (вариант) берутся из табл. 9.

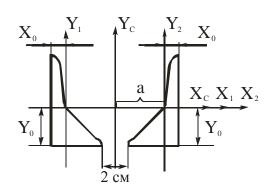
Таблица 8 Коэффициенты продольного изгиба ${\cal P}$ центрально-сжатых элементов

Гибкость	Стал	и с привед	денными р	асчетным	ии сопроті	ивлениями,	МПа
λ	200	240	280	320	360	400	440
10	988	987	985	984	983	982	981
20	967	962	959	955	952	949	946
30	939	931	924	917	911	905	900
40	906	894	883	873	863	854	846
50	869	852	836	822	809	796	785
60	827	805	785	766	749	721	696
70	782	754	724	687	654	623	595
80	734	868	641	602	566	532	501
90	665	612	565	522	483	447	413
100	599	542	493	448	408	369	335

Окончание табл. 8

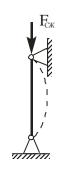

Гибкость	Стали с приведенными расчетными сопротивлениями, МПа							
λ	200	240	280	320	360	400	440	
110	537	478	427	381	338	306	280	
120	479	419	366	321	287	260	237	
130	425	364	313	276	247	223	204	
140	376	315	272	240	215	195	178	
150	328	276	239	211	189	171	157	
160	290	244	212	187	167	152	139	
170	259	218	189	167	150	136	125	
180	233	196	170	150	135	123	112	
190	210	177	154	136	122	111	102	
200	191	161	140	124	111	101	093	

Примечание: Значения коэффициента ${\cal P}$ в таблице увеличены в 1000 раз.


Таблица 9 Исходные данные к заданию 8

Вариант	Нагрузка $\emph{\textbf{F}}$, кН	Длина стержня l, м	Способ закрепления, μ	Расчетное сопротивление, МПа
1	50	2,0	2,0	200
2	55	2,2	2,0	240
3	60	2,4	1,0	280
4	65	2,5	1,0	320
5	70	2,6	1,0	360
6	75	2,8	0,7	400
7	80	3,0	0,7	440
8	85	3,2	0,7	480
9	90	3,4	0,5	520
10	95	3,5	0,5	560

Задача 8. Поперечные сечения стержней



Пример решения задачи 8

Дано:
$$F_{c ext{c}} = 750 \kappa H$$
 $l = 3, 1 M$ $\sigma = 280 M \Pi a$ $\mu = 1, 0$ $\lambda = 40 \div 200$ - гибкость стержня

 $\varphi_{3dd} = 0,5$ - во всех вариантах

Определить:

Решение

1. Определение суммарной площади сечения:

$$[F] = \varphi_{3a\partial}[\sigma]^{-}A_{\sum},$$

$$A_{\sum} = \frac{F_{C \to C}}{\varphi_{200}[\sigma]^{-}} = \frac{750}{0.5 \cdot 280000} = 0.05 M^{2},$$

$$A_1 = A_2 = \frac{A_{\sum}}{2} = 25cM^2$$

Из таблицы сортаментов для прокатного неравнополочного уголка выбираем ближайшую к расчетной площадь:

$$A_{maбл} = 26,7cм^2$$
; № уголка – 16/10,

$$I_x = 667cm^4$$
; $I_y = 204cm^4$; $B = 16cm$; $b = 10cm$; $y_0 = 5,23cm$; $x_0 = 2,28cm$.

2. Определение моментов инерции относительно главных центральных осей:

$$I_{x_{c}} = \left[I_{x} + b^{2}A\right] 2 = \left[667 + 0\right] 2 = 1334cm^{4},$$

$$I_{y_{c}} = \left[I_{y} + a^{2}A\right] 2 = \left[204 + (8,72)^{2}2,53\right] 2 = 4255,5cm^{4},$$

$$a = (b - x_{0}) + 1 = 8,72cm.$$

Из двух расчетных моментов инерции выбираем минимальный.

3. Определение радиуса инерции относительно центра тяжести т.С:

$$i_{\min} = \sqrt{\frac{I_{x}}{A_{\sum}}} = \sqrt{\frac{1334}{50.6}} = 5.1c_{M}.$$

4. Определение гибкости стержня:

$$\lambda = \frac{\mu l}{i_{\min}} = \frac{1 \cdot 130}{5,1} = 60,78,$$

$$\varphi_{ma\delta n} = \frac{0,785 + 0,5}{2} = 0,65.$$

5. Определение допускаемой нагрузки:

$$[F] = \varphi_{ma\delta n}[\sigma] A_{\sum_{i}}$$

$$[F] = 0.65 \cdot 280000 \cdot 0.005 = 910 \kappa H.$$

6. Расчет погрешности:

$$\sigma = \frac{[F] - F_{CHC}}{[F]} \cdot 100 = 17,6\%.$$

Погрешность не должна быть более 5%.

Так как погрешность более 5%, то необходимо произвести вторую попытку расчета, выбирая при этом другую ближайшую площадь из таблицы сортаментов для прокатного неравнополочного уголка.

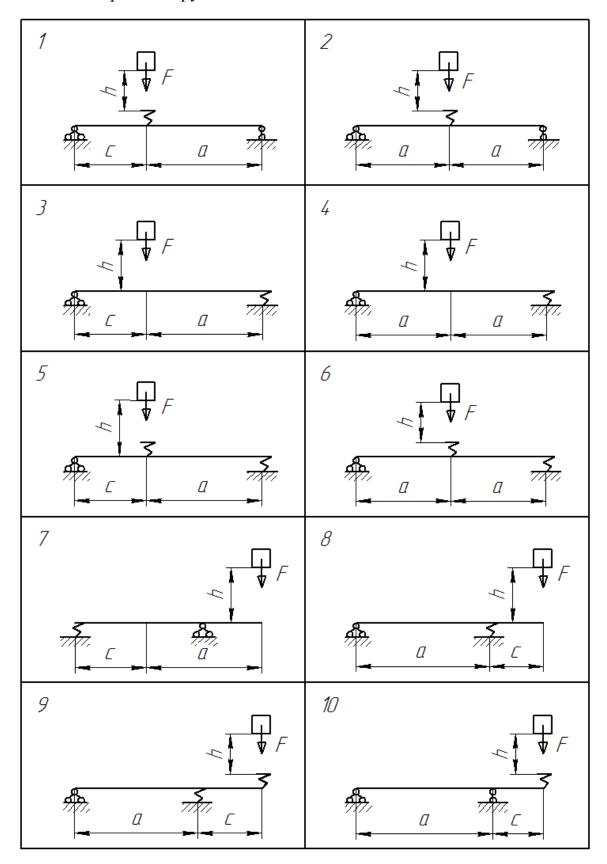
9. УДАРНЫЕ НАГРУЗКИ

Условия и порядок выполнения

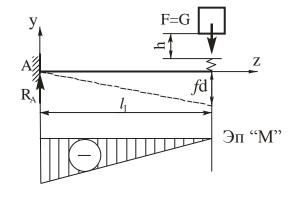
На элемент конструкции, как показано в заданной схеме, с высоты \boldsymbol{h} падает груз \boldsymbol{F} .

В качестве элемента конструкции служат двугавровая балка или стержень, выполненные из стали.

Определить:


- 1) деформацию стержня в момент падения груза или прогиб балки в точке падения груза;
- 2) наибольшее напряжение в конструкции в момент падения груза. Расчет произвести с учетом и без учета массы элемента конструкции.

Площадь большего сечения стержня в 2 раза превышает меньшую. Удельный вес стали принять равным $78 \ \kappa H/m^3$. Исходные данные для решения задачи (вариант) берутся из табл. 10. Площадь приведена для меньшего поперечного сечения стержня.


Таблица 10 Исходные данные к заданию 9

Ва- ри- ант	Падаю- щий груз F , кН	Высота падения груза h , см	Дли участ м	ков,	Площадь сечения стержня, см ²	Двутавр, номер профиля	Жесткость пружины <i>C</i> , кН/м
1	0,9	5	2,2	0,9	3,0	14	70
2	1,0	6	2,3	1,0	3,5	16	80
3	0,8	4	2,1	0,8	4,0	12	60
4	1,1	7	2,4	1,1	4,5	18	90
5	1,2	8	2,5	1,2	5,0	18 ^a	100
6	1,3	9	2,6	1,3	5,5	20	110
7	1,4	10	2,7	1,4	6,0	20 ^a	120
8	1,5	11	2,8	1,5	6,5	22 ^a	130
9	1,6	12	2,9	1,6	7,0	22	140
10	1,7	13	3,0	1,7	7,5	24	150

Задача 9. Ударные нагрузки

Пример решения задачи 9

Дано:

$$F = 4\kappa H; h = 12$$
cm; $l = 1,4$ cm; $q = 18,4$ кг

$$c = 80\kappa H$$
м; $E = 2 \cdot 10^8$

$$N_{I} = 18$$

Эп "M"
$$A = 4cM^2$$
; $I_x = 129cM^4$; $W_x = 143cM^3$

Определить:

$$\sigma_d$$
; f_d - без учета веса балки

$$\sigma_d$$
; f_d - с учетом веса балки

Решение

1. Определение реакции опоры в жесткой заделке:

$$\sum F(y) = 0$$
,

$$R_A - F = 0 \Rightarrow R_A = 4\kappa H$$
.

2. Определение внутреннего изгибающего момента в жесткой заделке в m.A:

$$\sum M(A)=0$$
,

$$M + F l = 0 \Longrightarrow M = -5.6 \kappa H \cdot M$$
.

3. Определение суммарного статического перемещения в т.С:

$$f_{\sum} = f_{(\vec{o})st} + f_{(np)st} = 1,4 + (-50) = -48,6$$
мм,

$$f_{(\delta)st} = \frac{F l^3}{3EI_x} = 0,0014M = 1,4MM,$$

$$f_{(np)st} = -\frac{F}{c} = -0.05$$
M = -50 MM.

4. Определение динамического коэффициента без учета веса балки:

$$k_d = 1 + \sqrt{1 + \frac{2h}{f_{st}(\Sigma)}} = 3,43.$$

5. Определение статического напряжения без учета веса балки:

$$\sigma_{st} = \frac{M}{W_{r}} = -\frac{5.6}{143 \cdot 10^{-6}} = -0.039 \cdot 10^{6} \kappa H M^{2} = 39 M \Pi a.$$

6. Определение динамического напряжения без учета веса балки:

$$\sigma_d = k_d \sigma_{st} = 133,8M\Pi a.$$

7. Определение динамического перемещения:

$$f_d = k_d f_{st(\Sigma)}$$
.

8. Определение динамического коэффициента с учетом веса балки:

$$k_{d} = 1 + \sqrt{1 + \frac{2h}{f_{st}(\Sigma)} \cdot \left(1 + \frac{Q_{np}}{F}\right)} = 3,41,$$

где $Q_{np} = \beta \ q \ l$ - приведенный вес балки;

 β - коэффициент приведения.

9. Определение динамического напряжения и динамического перемещения с учетом веса балки:

$$\sigma_d = k_d \sigma_{st} = 3,41 \cdot 39 = 133,16 M\Pi a,$$

$$f_d = k_d f_{st(\delta)} = 3,41.48,6 = 16cM.$$

ОСНОВНЫЕ ОБОЗНАЧЕНИЯ Система СИ

- F сосредоточенная сила (условно как бы приложенная в одной точке);
- q интенсивность распределенной нагрузки, сила на единицу длины (H/м, MH/м);
- M внешний момент, действующий на элемент конструкции (изгибающий или крутящий);
- γ удельный вес материала;
- σ нормальное напряжение (сигма σ);
- τ касательное напряжение (тау τ);
- $[\sigma]$ допускаемое нормальное напряжение;
- $[\sigma]_p$ допускаемое нормальное напряжение при растяжении;
- $[\sigma]_{cm}$ допускаемое нормальное напряжение при сжатии;
- [τ] допускаемое касательное напряжение [τ] \approx (0,5...0,6);
- σ_1 , σ_2 , σ_3 главные напряжения (экстремальные нормальные);
- σ_{max} , τ_{max} максимальные напряжения;
- $\sigma_{\!a\!v} \, \, \tau_{\!a} \, \,$ напряжения по произвольной наклонной площадке;
- n, n_y коэффициенты запаса прочности и устойчивости;
- N продольная сила;
- Q_x , Q_y поперечные силы;
- M_{x} , M_{y} изгибающие моменты относительно осей X и У;
- $M_{\kappa p}$ крутящий момент (относительно продольной оси Z);
- E модуль упругости Юнга для широкого круга материалов (E = $2 \cdot 10^5 \, \mathrm{M}\Pi a$);
- G модуль сдвига (G= $8 \cdot 10^4$ МПа);
- *v* коэффициент Пуассона;
- σ_{τ} предел текучести;
- $\sigma_{\!\scriptscriptstyle{\theta}}$ предел прочности;
- σ_{nn} предел пропорциональности;
- S_{κ} истинное сопротивление разрыву;
- δ относительное продольное удлинение;
- ψ относительное поперечное сужение;
- *и* удельная потенциальная энергия деформации;

W — работа внешней силы;

 γ_{xv} , γ_{zx} , γ_{vz} — угловые сдвиговые деформации в разных плоскостях;

 Δl — абсолютное продольное удлинение (или укорочение);

 ε_1 , ε_2 , ε_3 — главные относительные деформации;

 ε — относительное продольное удлинение (или укорочение);

 ϕ — угол закручивания поперечного сечения вала при кручении;

d — диаметр круглого стержня;

у — прогиб балки при изгибе;

z — координата произвольной точки сечения при рассечении по методу РОЗУ;

 S_{x} , S_{y} — статические моменты площади сечения относительно осей X и У;

A — площадь поперечного сечения стержней, балок и валов;

 A_{θ} — первоначальная (до нагружения) площадь поперечного сечения образца растяжения;

 x_c, y_c — координаты центра тяжести сечения;

 x_i, y_i — координаты центров тяжести отдельных фигур сечения;

 I_{x} , I_{y} — относительные моменты инерции относительно осей X и У;

 I_{xy} — центробежный момент инерции сечения относительно осей X и У;

 I_{P} — полярный момент инерции сечения относительно координат;

 i_{x} , i_{y} — главные радиусы инерции;

 I_{max} , I_{min} — главные моменты инерции сечения;

 W_{x} , W_{y} — осевые моменты сопротивления сечения (используются при расчете на прочность при изгибе);

 W_P — полярный момент сопротивления сечения (используется при расчете на кручение);

$$1M\Pi a = 1000 \kappa H / M^{2}, \qquad S_{x} = 345 c M^{3} = 345 \cdot 10^{-6} M^{3},$$

$$1\kappa H = 100 \kappa \varepsilon,$$

$$E = 2 \cdot 10^{5} M\Pi a = 2 \cdot 10^{8} \kappa H / M^{2}, \qquad W_{x} = 260 c M^{3} = 260 \cdot 10^{-6} M^{3},$$

$$[\sigma] = 160 M\Pi a = 160000 \kappa H / M^{2}, \qquad A = 2c M^{2} = 2 \cdot 10^{-4} M^{2}.$$

$$I_{x} = 5048 c M^{4} = 5048 \cdot 10^{-8} M^{4},$$

ОГЛАВЛЕНИЕ

Общие положения и указания по выполнению расчетно-	
графических работ	3
5. Статически неопределимые системы	4
6. Внецентренное растяжение (сжатие) прямых стержней	11
7. Одновременное действие кручения и изгиба	16
8. Устойчивость сжатых стержней	23
9 Ударные нагрузки	28
Приложение	32