Турлов Андрей Генрихович

ЛЕСОВОДСТВЕННО-ЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ
БЕРЕЗОВЫХ ЛЕСОВ ЛЕСОСТЕПНОГО ЗАУРАЛЬЯ И ОБОСНОВАНИЕ
СПОСОБОВ ИХ ОБНОВЛЕНИЯ И ПЕРЕФОРМИРОВАНИЯ

06.03.03 – лесоведение и лесоведство,
лесные пожары и борьба с ними

АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата сельскохозяйственных наук

Екатеринбург – 2005
ЛЕСОВОДСТВЕННО-ЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ
БЕРЕЗОВЫХ ЛЕСОВ ЛЕСОСТЕПНОГО ЗАУРALLY И ОБОСНОВАНИЕ
СПОСОБОВ ИХ ОБНОВЛЕНИЯ И ПЕРЕФОРМИРОВАНИЯ

06.03.03 – лесоведение и лесоводство,
лесные пожары и борьба с ними

АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата сельскохозяйственных наук

Научная библиотека
УГЛТУ
Екатеринбург
Екатеринбург – 2005
ВВЕДЕНИЕ

Актуальность темы. В лесостепной зоне Урала и Западной Сибири береза является главной и преобладающей породой. По отдельным лесозам она занимает от 40 до 90% лесокрытой площади. Березовые леса здесь выполняют важные средообразующие и полезно-лечебные функции, способствуют повышению урожайности сельскохозяйственных культур. Однако за последние 50-летний период ведения хозяйства в березовых лесах этой зоны накопился ряд острых нерешенных проблем, связанных с крайне низким уровнем освоения расчетной годичной лесосеки рубками главного пользования в геоплощадях, не регулированной пастбищной скота, а также несистемными выборочными рубками и распространением вредителей и болезней в березовых лесах. В результате этого перестойные и спелые березовые насаждения занимают около половины лесокрытых земель. Они низко- и среднеплотны, в основном вегетативного происхождения и многие неудовлетворительного санитарного состояния. В березовых лесах на значительных площадях образовались погибшие насаждения – "вымочки". Поэтому они утрачивают средообразующие и агроклиматические функции, товарную ценность древесины. Выход деловых сортиментов составляет 27-42%. В целом эксплуатационный фонд березовых насаждений подростом предварительной генерации по отдельным лесорастительным районам обеспечен только на 0,8-13% площади.

Научные исследования в березовых лесах лесостепной зоны Тюменской области по изучению видового состава березы, структуры и санитарного состояния древостоя, способов и методов их своевременной замены с помощью рубок, включая оптимизацию режима рубок главного и промежуточного пользования, ранее проводились фрагментарно.

Целью работы является повышение продуктивности и защитных свойств березняков путем разработки новых способов рубок с применением традиционной и агрегатной техники и мерами воздействия естественному возобновлению березы, а также хозяйственной пород, соответствующих условиям их местопроизрастания.

Задачи работы следующие:
1. Анализ результатов лесохозяйственной деятельности на юге Тюменской области за последние 52-летний период.
2. Изучение особенностей строения березовых древостояв в различных лесорастительных районах лесостепной зоны, их товарной структуры, санитарного состояния и процессов естественного возобновления под пологом древостоя и на вырубках.
3. Разработка рекомендаций по проведению рубок в березняках.

Положения, выносимые на защиту:
1. Оценка результатов лесохозяйственной деятельности лесохозяйств на юге Тюменской области за 52-летний период.
2. Характеристика состояния березовых лесов в лесостепной зоне Зауралья.
3. Проектирование по обновлению и переформированию березовых насаждений в лесостепной зоне.
Новизна исследования.
Впервые установлены закономерности пространственной динамики березовых древостоя, разновозрастность которых появляется с севера-запада на юго-восток, за границы подзоны северной лесостепи на западе к восточной границе их распространения в подзоне типичной лесостепи. Сформулирована гипотеза формирования разновозрастной структуры березняков. Одновременно показано, что в северной лесостепи во всех типах леса естественным путем формируются березняки смешанного вегетативно-семенного происхождения со значительным участием корнеотростькой осины, а также с незначительным участием сосны преимущественно в зеленомощниковой группе типов леса. На-против, в типичной лесостепи процесс возобновления на вырубках идет преимущенно за счет корнеотростькой осины и березы вегетативным путем. В северной и типичной лесостепи процесс возобновления березы семенного происхождения лучше идет под пологом древостоев при полноте 0,6-0,7 на минерализованной почве в плужных бороздах. Обоснованы и разработаны новые способы, технологии и орудия для переформирования спелых и перестойных березовых насаждений в вольно-березовые молодняки.

Обоснованность и достоверность результатов обеспечена наличием результатов научных исследований, проведенных в четырех лесозах лесостепной зоны и в сравнительном плане в одном лесозе подтаежных лесов на 8 стационарных участках за период с 2000 по 2004 гг., с использованием современных методик и статистической обработки материалов, а также анализом репрезентативного и большого по объему материала Государственного учета лесного фонда за последние 52-летний период времени. Получено 2 Свидетельства РФ на полезную модель: № 11647 “Рабочий орган орудия для минерализации лесных почв” и № 11949 “Рабочий орган орудия для обработки почв”, и приоритет по заявке на изобретение “Способ обновления и переформирования березовых насаждений”.

Практическая значимость. Разработан и передан для рассмотрения на техническом совете ФГУП “Записьпроект” для утверждения в МПР и последующего включения в новую редакцию нормативных документов “Проект наставления по обновлению и переформированию березовых насаждений в лесостепной зоне”.

Апробация. Основные результаты исследований были обсуждены на Мировоззренческих чтениях в г. Мытищи Московской области; на чтениях, посвященных Б.П. Колеснику, в г. Екатеринбурге в 2001 г., а также на конференциях и совещаниях в гг. Чебаркуль, Томск, Курган и на сценарии в отеле лесоводства Ботанического сада УрО РАН с участием сотрудников Свердловской лесоустойчивой экспедиции в 2002 г. Предоставлена на международную выставку - ярмарку “Лесной комплекс 2004” в г. Екатеринбурге реклама о новых способах рубок и лесовозобновления в березняках.

Вклад автора заключается в постановке цели и задач, участии в разработке программы и методик, а также организации и проведении полевых работ на опытных и опытно-промышленных объектах, участие в обработке, анализе и обобщении результатов исследований на правах ответственного исполнителя работ от научно-исследовательской темы 6/01.

Публикации. Основные положения диссертационной работы изложены в 9 печатных работах, из них 4 заявки на изобретения и свидетельства на полезные модели.

Структура и объем работы. Диссертация состоит из введения, 5 глав, обобщающих выводов и рекомендаций производству, 5 приложений. Общий объем работы 225 стр., 34 рисунка, 45 таблиц. Список литературы содержит 199 источников, в том числе 7 – иностранных авторов.

Глава 1. Изученность березняков района исследований и смежных территорий
Береза одна из наиболее распространенных пород России и представлена более чем 40 видами. Из этого разнообразия видов особенно широко распространены и имеют наибольшее значение для народного хозяйства два чисто сосновые произрастающие – береза повислая (Betula pendula Roth) и береза пушистая (Betula pubescens Ehrh.).
В результате изучения закономерностей внутривидовой изменчивости и особенностей формирования популяционной структуры березовых посевов в Зауралье у березы повислой выделено 4 группы популяций, а у березы пушистой – 5 групп (Махнев, 1987). Главным видом, образующим колки в лесостепи Зауралья, по мнению Н.А. Ивановой, И.М. Крашенинникова (1934) и П.Л. Горшкова (1949), является береза пушистая, которая занимает наиболее пониженную центральную часть колков. Березы в колках на засолненных почвах отличаются сокращенной продолжительностью жизни – до 40-50 лет.
Березы потенциально обладают высокой семенной продуктивностью, но у них, как и большинства лесообразующих видов, выражена периодичность или временная изменчивость плодоношения.
На Урале порослевую способность берез впервые изучил А.Е. Тезоухов в 1852 г. и пришлося установить, что наибольшей порослевой способностью обладают 20-30-летние березы (семенного происхождения), лучшим временем рубки деревьев с точки зрения возобновления является: февраль, март, апрель и сентябрь.
Вообще, в типичной лесостепи Южного Урала умеренные березовых насаждений порослевого происхождения неоднородно пройдены бессистемными рубками, и создание новых лесных и полезащитных лесных насаждений связано с трудностями, обусловленными тем, что здесь почти все плодородные почвы предназначены к использованию в сельском хозяйстве. На остальных землях большой удельный вес занимают солонцеватые почвы, солонцы, солонцы и солонцы. Поэтому на солонцах хорошей и удовлетворительной лесопригодности рекомендуется создавать культуры сосны обыкновенной, а также березы повислой и пушистой, а на солонцах ограниченной и условной лесопригодности только культуры березы бородавчатой (Фрейберг, 1981).
Таким образом, очевидно, что лесостепные березняки Зауралья представляют собой в экзокально-лесоводственном и селекционно-генетическом отношение.
Глава 2. Естественно-исторические условия лесостепной зоны Тюменской области

Показано, что территория области лежит в пределах Западно-Сибирской равнины. На основании литературных данных приводится детальная характеристика лесостепной зоны в отношении особенностей рельефа, гидрологии, климата, почв, лесостепного и лесохозяйственного районирования. Дается оценка соответствия природно-климатических условий района исследований эколого-биологическим свойствам лесообразующих видов.

Глава 3. Программа, методы и объекты исследований

Учитывая, что в лесостепной зоне Зауралья создавалась острые проблèmes экологической устойчивости и полноценного воспроизводства целых и переходных биоразнообразий, для разработки способов и режимов рубок, а также способов лесовосстановления сформулированы следующие рабочие гипотезы и направления исследований:

- в лесостепной зоне Зауралья необходим проводить весенние рубки с умеренной интенсивностью изреживания с расчетом на сопутствующее сельское поселение бурзян и одновременный посев семян хвойных пород;
- способы рубок должны базироваться на топологической основе, а режимы рубок устанавливаться экспериментальным путем;
- в высокоплодных насаждениях (с плотностью 0,9-1,0) первый прием рубок следует проводить путем изреживания древостоя до оптимальной полноты (густоты) с целью интенсификации процессов семеноводства породы и дальнейшей сохранности подроста хвойных пород и деревьев под пологом. Оптимальную полноту необходимо установить в процессе экспериментальных работ отдельно по каждому преобладающему типу леса;
- последующие приемы рубок должны обеспечить сохранность подроста в процессе лесозаготовок и неблагоприятных факторов внешней среды. Поэтому после первого приема необходимо ориентироваться на групповое или полосное изреживание древостоя в местах с наличием подроста главных пород;
- в выделах с достаточным количеством подроста или со вторым ярусом верхних ярусов древостоя целесообразно удалить за один прием рубки с целью создания благоприятных условий для новой поколения.

Объектами исследований являются четыре лесозащиты лесостепной зоны — Тюменский, Упоровский, Омутинский и Казанский, а также Арамаевский, расположенный в подзоне сосново-березовых предлесостепных (побежающих) лесов лесной зоны.

За период исследований основано 35 постоянных и 23 временных пробных площадей, проведен анализ лесоустройительных материалов 25 ключевых лесозащит, представляющих лесорастительные районы по двум преобладающим типам леса. Определялась численность подроста в подслое по доле его участия в составе. Методом статистического анализа установлены коэффициенты парной корреляции численности подроста (приведенного по плотности и высоте к единому показателю) с долей участия древостоя в составе древостоя, возрастом древостоя и полнотой.

Возрастную структуру древостоя изучали на биотопическом ряде. Эти показатели позволяют сделать вывод о ходе естественного возобновления и формирования состава и строения древостоя в возрасте 10 и более лет назад в различных типах леса с учетом интенсивности ведения лесного хозяйства в прошлом.

Для уточнения и корректировки материалов лесоустройства на участках несплошных производственных рубок закладывались временные пробные площади, согласно ОСТ-56-69-83 "Пробные площади лесоустроительные. Метод закладки".

При изучении численного состава, возрастной структуры и состояния подроста и молодняка использовались методические принципы, изложенные в "Инструкции по составлению подроста и молодняка лесных ценозов по методике С. С. Саиной (1992)

Закономерности динамики численности, жизнеспособности и роста подроста в зависимости от биотопического ценотического окружения (густоты и густоты древостоя) и факторов микроклимата (проективное покрытие травянистыми растениями и мхом, высота травы и толщина лесной подстилки) изучаются по упрощенной методике Н. С. Саиной (1984).

Материалы исследований обработаны табличным, графическим и статистическим методами с использованием программ Statgraphics и Statistica. Достоверность результатов оценивалась по критериям Стьюдента и Фишера на 5% уровне доверительной вероятности.

Глава 4. Состояние лесов на юге Тюменской области

Анализ лесохозяйственной деятельности 19 лесозащит (без Демьяновского и Уватского) за период с 1951 по 2002 гг. и современное состояние лесного фонда 21 лесозащиты на всей современной южной части области выполненено на материалах Программы Государственного учета лесного фонда, техническим отчетом бывшего Комитета по лесу, литературным источникам.

В середине прошлого столетия на территории Тюменской области в течение трех десятилетий ежегодно заготавливалось по 4-6 млн. м³ древесины. Наиболее интенсивно эксплуатировались лесозаготовками леса расположенные в
Изменение площади лесных покрытий земель за период с 1951 по 1962 г., по данным А.М. Вегерина, и с 1963 по 2002 г., по данным государственного учета лесного фонда (без Демьяновского и Уватского лесозаготовительных предприятий).

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Ед. изм.</th>
<th>Основные лесообразователи</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>все хвойные</td>
<td>береза</td>
</tr>
<tr>
<td>Было в 1951 г.</td>
<td>тыс. га</td>
<td>786,31</td>
<td>921,23</td>
</tr>
<tr>
<td>Стало в 1962 г.</td>
<td>тыс. га</td>
<td>709,35</td>
<td>837,30</td>
</tr>
<tr>
<td>Увеличение к 1962 г.</td>
<td>тыс. га</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Сокращение к 1962 г.</td>
<td>тыс. га</td>
<td>76,96</td>
<td>84,03</td>
</tr>
<tr>
<td>Изменение к 1951 г.</td>
<td>% 9,8</td>
<td>9,1</td>
<td>2,6</td>
</tr>
<tr>
<td>Стало в 2002 г.</td>
<td>тыс. га</td>
<td>920,31</td>
<td>1058,1</td>
</tr>
<tr>
<td>Увеличение к 2002 г.</td>
<td>тыс. га</td>
<td>210,96</td>
<td>220,9</td>
</tr>
<tr>
<td>Изменение к 1962 г.</td>
<td>% 29,7</td>
<td>26,4</td>
<td>30,0</td>
</tr>
</tbody>
</table>

Анализ участия древесных пород в составе лесов показал, что в течение последующего 40-летнего послерубоочного периода происходила интенсивная смена хвойных пород на лиственные и, в основном, смесь сосны и ели на осину. В Нижне-Туринском и Тоболо-Исетском лесорастительных районах площадь основных насаждений сократилась на 3-7%, а основных увеличилась в 2-3,5 раза. За счет смены ели на осину и лиственницы в подзоне южной тайги в 1,5 раза сократилась площадь ельников. Сосна увеличивала свое участие в составе лесов только в южной тайге, а также в Омутинском лесорастительном районе северной лесостепи и в тундро-лесостепи. Это произошло за счет создания лесных культур. В целом, несмотря на интенсивное искусственное лесовосстановление, сосна не смогла восстановить свою долю участия в составе лесов юга Тюменской области. Береза во всех районах в основном сохранила свое участие в составе лесов за исключением Омутинского района крупноколончатых лесов и завши и тишины лесостепи, где на вырубках шла интенсивная смена березы на осину.

За 40-летний период после высокопроцентного лесопользования заметно увеличилась доля площадей в средневозрастной группе, и сократились площади приспевающих, спелых и перестойных лиственных насаждений. Это произошло в связи с повышением возраста рубок главного пользования на 1-2 класса в лиственных лесах и снижения в хвойных. Решение этого вопроса важное и с лесоводственных позиций невозможно. Это привело к накоплению перестойных древостояв в лиственных лесах, снижению товарной ценности соевых и березовых древостояв, ухудшению санитарного состояния насаждений и возобновительных процессов особенно в березовых и осиновых лесах области.

За прошедший период в типологической структуре лесов произошли изменения связанные с ксерофитиазом климата, влиянием деятельности человека и, главным образом, концентрированных рубок и изменением таксономических показателей насаждений. В таежной зоне площадь лишайниковой группы типов леса увеличилась в 2-4 раза, а в лесостепной зоне незначительно сократилась. Практически во всех лесорастительных районах и группах формаций идет сокращение в 1-2 раза площадей зеленомощниковых группы типов леса и увеличение травяной, травяно-болотной и пойменной групп. Эти два противоречивых процесса, на наш взгляд, объясняются в основном непрерывной калифорниацией сухой и полупустынной ветхой, лесных элементов в зоне прямого столетия и резким сокращением объема за подготовак за последние годы. В лесостепной зоне площадь зеленомощниковых лесов сократилась менее значительно, чем в лесной зоне в связи с созданием лесных культур преимущественно в этой группе типов леса.

В целом следует отметить, что перестойные березовые насаждения, которые преобладают в составе лесов в настоящее время, плохо выполняют эстетические и защитные функции.

В настоящее время доля многолетнего хозяйства от лесопокрытой площади в целом по югу области составляет 54,9 %, в том числе в южно-таежных лесах - 47,5; в подтаежных - 76,4, в лесостепных - 69,3 %. Березняками занято 46,5 % всех лесокрытых земель и 88,7 % в многолетнем хозяйстве. В последнем преобладают древесные и болотные березовые насаждения (65,2 %) второго и третьего классов бонитета. Распределение березняков по группам возраста следующие: молодняки - 9,6; средневозрастные - 28,4; приспевающие - 12,1; спелые и перестойные - 49,9%, то есть половина площади в березняках занимает спелые и перестойные древостоя. Во всех ключевых лесозабоях они близки к возрасту технической спелости, поэтому нуждаются в замене молодым поколением. Производительность березняков закономерно повышается от 11,9 до 14,4 классов бионита по мере улучшения климатических и почвенных условий (табл. 4.2.).
Таблица 4.2.

<table>
<thead>
<tr>
<th>Наименование лесоза</th>
<th>Возраст, лет</th>
<th>Класс бонитета</th>
<th>Полнота</th>
<th>Запас древесных на 1 га, м³</th>
<th>Прирост на 1 га, м³</th>
<th>Состав древостоя</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тюменский</td>
<td>54</td>
<td>II,9</td>
<td>0,68</td>
<td>119</td>
<td>151</td>
<td>2,0, 1,9</td>
</tr>
<tr>
<td>Упоровский</td>
<td>57</td>
<td>II,5</td>
<td>0,67</td>
<td>140</td>
<td>176</td>
<td>2,4, 2,2</td>
</tr>
<tr>
<td>Омутинский</td>
<td>52</td>
<td>II,4</td>
<td>0,70</td>
<td>137</td>
<td>174</td>
<td>2,5 Нет данных</td>
</tr>
<tr>
<td>Казанский</td>
<td>48</td>
<td>II,4</td>
<td>0,60</td>
<td>107</td>
<td>131</td>
<td>2,4 Нет данных</td>
</tr>
<tr>
<td>Среднее</td>
<td>52</td>
<td>II,5</td>
<td>0,67</td>
<td>128</td>
<td>157</td>
<td>2,4, 2,3</td>
</tr>
</tbody>
</table>

Березовые леса в большинстве лесоземов среднеплотные и лишь в Казанском лесоземе в ковчёных лесах полнота и запас древостоев значительно снижены. Средний и текущий прирост снижаются в Казанском лесоземе в связи с избыточной засоленностью почв, а в Тюменском и Упоровском лесоземах в связи с недостаточным плодородием песчаных и суглинистых почв. Кроме того, выскокая продуктивность по данным материалов лесоустройства искусственно созданных сосновых и еловых лесов в лесостепной зоне дает нам право рекомендовать их дальнейшее создание в более широких масштабах с целью постепенной замены этих осин и берез на сосны или сосново-лиственничные насаждения в свежих типах леса и на смешанные елово-лиственничные в периодиче-ских влажных.

Березовые леса травяно-болотной группы типов леса в лесостепной зоне являются коренными (Вегерин, 1967). Образуя в основном семенным путем в 3-5-летние севообороты с пониженным уровнем грунтовых вод. Анализ показывает, что более чем на 70% площади они чистые по составу или с незначительной примесью других пород.

Анализ материала лесоустройств показывает, что состав березовых лесов в лесостепной зоне в разнотравной группе типов леса с северо-запада на юго-восток существенно изменяется. Наиболее разнообразные по составу березняки встречаются в Тобольском лесосадительном районе примыкающем к юго-западной границе лесной зоны. Здесь преобладают смешанные по составу березовые леса с участием других пород от 3 до 8 единиц, в том числе сосны в среднем 3,5 единицы и занимают они до 77,7% площади. На чистые березняки, а также с участием других пород до двух единиц приходится 22,3%. В травяно-болотной группе типов леса общие закономерности распределения сохраняются, но снижается участие в составе сосны почти в 3 раза и увеличивается участие осины и лещины, а Омутинском, Берлюжском и Сладковском районах, на черноzemно-солонцеватых и осолонцовых поч-вах в составе естественных березовых древостоев практически нет сосны и больше чем в 3 раза сократилось участие осины. Здесь в осоко-лабазниковом и других переуваженных типах леса чистые березняки и с участием до 2-х единиц сосны занимают от 82 до 92,7% площади, а с участием осины и более 5 единиц встречаются единично, не более чем на 2,7% площади.

Материалы визуальной трактовки также свидетельствуют о преобладании однородной структуры березовых древостоев в лесостепном Зауралье. Разнообразные формируются в среднем всего лишь на 26% лесопокрытой площади. При этом различие в строении древостоев по типам леса не превышает 3%, тем является несущественным, а разновозрастность является северо-запада на юго-восток, т. е. от границы подзон северной лесотопии (Тюменский лесхоз) к юго-восточной границе распространения березовых насаждений в подзоне лесотопии (Казанский лесхоз).

На основе обобщенного анализа можно предположить, что на формировании состава и структуры березовых древостоев наиболее существенное влияние оказывает засоленность почв. На осолонцевых черноземах северной лесотопии и суглинистых солонцах типичной в естественных насаждениях сосна и осина не выделяют конкуренцию березе и к возрасту ее технической спелости вынуждают ее форму, поэтому формируются чистые или с незначительной примесью осины березовые насаждения сложные по возрастной структуре строения.

Глава 5. Изучение процессов естественного возобновления березы в лесостепной зоне.

Анализ возобновления по лесорастительным зонам, подзонам и районам показывает, что естественное возобновление леса на юге Тюменской области лучше всего идет в ее западной части на почвах древних озеро-речных алювиальных песчаных наносов широких речных долин. Здесь более половины площадей лесопокрытых земель (54%) возобновляется естественным путем, но с преобладанием листенных пород в составе, а в восточной части, а также в типичной лесотопии - не более чем на 32% площади. Возобновление идет на первых этапах, как правило, порослевых основных и березой. Сосна в лесостепи возобновляется естественным путем только в Тобольском лесосадительном районе, причем не более чем на 2% лесопокрытых земель. При сравнении процессов возобновления лиственных пород в лесостепной зоне следует отметить, что они лучше всего возобновляются на участках в Тобольском районе северной лесотопии - на 56% площади, а в тихой лесостепи и в крупнотычковых березовых лесах северной лесотопии на 29%. На втором месте протагоны и пустыри, и на третьем, последнее - горы. В северо-западной части северной лесостепи горы имеют подрост на одной трети площадей, а на юго-восточной части только на 20%.

Площадь лесопокрытых земель - 14,9 тыс. га в целом по области и 3,9 тыс. га - по лесостепной зоне, на которых предлагается восстановить хозяйственно целевые породы. Это вполне реальность работы по естественному возобновлению путем минерализации почвы и уходом за составом молодняков. Это своеобразный резерв и
лесовосстановлении. В лесостепных березняках эта площадь составляет 34 % от общего фонда лесовосстановления.

Для практического решения этой важной проблемы на первом этапе нами проведен анализ процессов лесовозобновления в различных типах леса лесопокрытых лесов в Казанском лесхозе, расположенном в типичной лесостепи на границе Бердышевского и Следковского лесорастительных районов наиболее благоприятных по почвенно-климатическим условиям (табл. 5.1).

Таблица 5.1.

<table>
<thead>
<tr>
<th>Степенность типов леса</th>
<th>Гари и погибшие древостоя</th>
<th>Вырубки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Общая площадь, га</td>
<td>Переведено в лесопокрытые земли</td>
</tr>
<tr>
<td>Разнотравный</td>
<td>109</td>
<td>25</td>
</tr>
<tr>
<td>Злаково-разнотравный</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>Травяно-болотный</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Итого</td>
<td>190</td>
<td>38</td>
</tr>
</tbody>
</table>

Из таблицы видно, что наиболее успешно в лесах возобновляются вырубки северной группы типов леса, в частности березняки разнотравные. Так, за истекший ревизионный период естественным путем возобновилось 65 % вырубок этого типа леса. Значительно хуже идет процесс естественного зарастания на не покрытых лесом землях в этом типе леса на гари и погибших древостоях, всего лишь на 23 % площади. Во взятом злаково-разнотравном типе леса лучше восстанавливаются гари, чем вырубки. Травяно-болотная группа типов леса восстанавливаются неуспешно, преимущественно в засушливые периоды и на площади от 12 до 35 % от общей.

Это позволяет рекомендовать проведение содействия естественному возобновлению в первую очередь в разнотравном наиболее производительном типе леса лесостепной зоны.

Анализ обеспеченности березняков лесостепной зоны подростом предварительной генерации выполненный в сравнительном плане по лесорастительным районам путем случайной выборки характеристик не менее 200 выделов по каждому району и типу леса показал, что березовый подрост встречается в разнотравном типе леса в среднем на 81 %, а в травяно-болотной группе типов в среднем на 59 % площади эксплуатационного фонда, но выдела с достаточным для естественного лесовосстановления количеством подроста составляют в разнотравном типе леса от 0,8 до 13 %, а в травяно-болотной группе типов – от 0,3 до 9 % от общей площади фонда. Это в 4-6 раз меньше, чем в Вагай-Ишимском районе пределесостепенных сосно-березовых лесов. Подростом бе-

рёзы лучше всего обеспечены березняки Тоболо-Исетского лесорастительного района северной лесостепи (Тюменский и Упоровский лесозоны). По мере продвижения на юго-восток его численность существенно снижается и в мелкоколичественных лесах типичной лесостепи (Голыгино-Бесовецкий лесозоны) его насчитывается всего лишь от 0,3 до 0,8% от нормативного критерия достаточности для естественного лесовосстановления.

Средняя численность подроста составляет во всех выделах эксплуатационного фонда от 11 до 33% от норматива в березняках разнотравных, и от 16 до 45% в травяно-болотной группе березняков. В выделах с подростом эти показатели несколько выше. Таким образом, следует констатировать крайне низкую – от 0,3 до 13% – обеспеченность березняком подростом предварительной генерации в лесостепной зоне и значительно лучшую, от 16 до 36% от общей площади пределесостепенных сосно-березовых лесов лесной зоны.

Анализ лесоустроительных материалов и полевых исследований по экологии естественного возобновления в типах леса – разнотравном, лабазниково-швовочном в подтаежных лесах и осоково-лабазниковом в лесостепной зоне показал, что березовые насаждения лесостепной зоны и Вагай-Ишимского района лесной зоны подростом главной породы в количестве необходимом для естественного лесовозобновления обеспечены недостаточно во всех лесорастительных районах и во всех группах возраста древостоя. При этом наиболее слабо подростом обеспечены березняки Бердышевского района типичной лесостепи (табл. 5.2). Эти данные свидетельствуют о крайне низкой обеспеченности подростом предварительной генерации березняков лесостепной зоны, поэтому необходима разработка мер по содействию естественному семенному возобновлению.

С точки зрения возрастной репродуктивной способности березняков, самый высокая численность подроста отмечается в 40-60-летнем из возрасте, а с увеличением среднего возраста подроста, примерно от 3 до 15 лет, очевидно, что самый высокий и качественный урожай семян на вагай-ший возрасте отмечается в 50-летнем возрасте.

По средним показателям прослеживается определенная тенденция повышения численности березового подроста с увеличением участия этой породы в составе.

<table>
<thead>
<tr>
<th>Группы возраста, лет</th>
<th>Тоболо-Исетский</th>
<th>Омутинский</th>
<th>Сладковский</th>
<th>Бердышевский</th>
<th>Среднее по лесостепи</th>
<th>Вагай-Ишимский</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-50</td>
<td>1,25</td>
<td>1,14</td>
<td>1,34</td>
<td>0,48</td>
<td>1,05</td>
<td>1,25</td>
</tr>
<tr>
<td>51-60</td>
<td>1,52</td>
<td>1,22</td>
<td>1,59</td>
<td>0,68</td>
<td>1,25</td>
<td>2,27</td>
</tr>
<tr>
<td>61-70</td>
<td>1,15</td>
<td>0,99</td>
<td>1,46</td>
<td>0,47</td>
<td>1,02</td>
<td>2,07</td>
</tr>
<tr>
<td>71-80 и более</td>
<td>1,10</td>
<td>1,05</td>
<td>1,15</td>
<td>0,45</td>
<td>0,94</td>
<td>2,05</td>
</tr>
<tr>
<td>Среднее</td>
<td>1,26</td>
<td>1,13</td>
<td>1,32</td>
<td>0,52</td>
<td>1,06</td>
<td>2,54</td>
</tr>
</tbody>
</table>
древостоев. В отдельных лесорастительных районах, например в Тоболо-Исетском и Омутинском, данная тенденция проявляется менее определенно. Последнее, на наш взгляд, можно объяснить сравнительно большой длительностью разветвления семян у березы, частым и обильным её плодоношением (табл. 5.3).

Общие тенденции динамики численности подроста по лесорастительным районам в зависимости от полноты древостоя аналогичны таковой, связанной с его составом. Подрост березы лучше сохраняется и развивается в низкополнотных древостоях в связи с биологической особенностью березы, ее большим светолюбием (табл. 5.4).

Во всех изученных типах леса численность березового подроста не достаточна для лесовосстановления, поскольку составляет от норматива 39-44 %. По типам леса эти показатели различаются не значительно, в пределах 5 %. В двух из трех сравниваемых типов леса подрост березы лучше сохраняется при низких полнотах.

Таблица 5.3.

<table>
<thead>
<tr>
<th>Участие березы в составе древостоя, %</th>
<th>Лесорастительные районы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тоболо-Исетский</td>
<td>Омутинский</td>
</tr>
<tr>
<td>10</td>
<td>1.45</td>
</tr>
<tr>
<td>8-9</td>
<td>1.29</td>
</tr>
<tr>
<td>5-7</td>
<td>1.36</td>
</tr>
<tr>
<td>1-4</td>
<td>0.86</td>
</tr>
<tr>
<td>Среднее</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Численность березового подроста в эксплуатационном фонде чистых и смешанных по составу древостоев в разнотравном типе леса, тыс. шт./га

Таблица 5.4.

<table>
<thead>
<tr>
<th>Относительная полнота</th>
<th>Лесорастительные районы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тоболо-Исетский</td>
<td>Омутинский</td>
</tr>
<tr>
<td>0.3-0.4</td>
<td>1.38</td>
</tr>
<tr>
<td>0.5-0.6</td>
<td>1.56</td>
</tr>
<tr>
<td>0.7-0.8</td>
<td>1.18</td>
</tr>
<tr>
<td>0.9-1.0</td>
<td>0.86</td>
</tr>
<tr>
<td>Среднее</td>
<td>1.26</td>
</tr>
</tbody>
</table>

В переувлажненном березняке осоково-лагозниковом, наибольшее количество подроста отмечается в пределах полнот 0.5-0.8. При этих полнотах в данном типе леса вероятнее создаются лучшие гидрологические условия.

В результате экспериментальных работ по изучению процессов естественного возобновления древесных пород на лесосеках сплошного и равномерно-

постепенного способов рубки берёзовых древостоев, а также на берёзовых промышленных вырубках 5-летней давности, где учёт входов и подроста проводился ежегодно по годам, лесообразующим породам и категориям угодий: на минерализованной почве в плужных бороздах и в междуурядных минерализованных полосах установлена зависимость численности входов берёз от сомкнутости травостоя в бороздах на минерализованной почве (табл. 5.5 и 5.6).

Таблица 5.5.

<table>
<thead>
<tr>
<th>Лесорастительный район</th>
<th>Возраст входов, лет</th>
<th>Численность входов в группах полнот древостоя, шт./м²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>до 10 м²</td>
<td>11-14 м²</td>
</tr>
<tr>
<td>Тоболо-Исетский</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-летки</td>
<td>14,9</td>
<td>37,1</td>
</tr>
<tr>
<td>2-летки</td>
<td>1,0</td>
<td>3,5</td>
</tr>
<tr>
<td>Среднее, %</td>
<td>6,7</td>
<td>9,4</td>
</tr>
<tr>
<td>Бердюжский</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-летки</td>
<td>-</td>
<td>15,0</td>
</tr>
<tr>
<td>2-летки</td>
<td>-</td>
<td>1,4</td>
</tr>
<tr>
<td>Среднее, %</td>
<td>-</td>
<td>9,3</td>
</tr>
</tbody>
</table>

Таблица 5.6.

<table>
<thead>
<tr>
<th>Лесорастительный район</th>
<th>Возраст входов, лет</th>
<th>Численность входов в группах полнот древостоя, шт./м²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>до 5%</td>
<td>6-10%</td>
</tr>
<tr>
<td>Тоболо-Исетский</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-летки</td>
<td>20,8</td>
<td>42,7</td>
</tr>
<tr>
<td>2-летки</td>
<td>3,8</td>
<td>5,4</td>
</tr>
<tr>
<td>Среднее, %</td>
<td>18,2</td>
<td>12,6</td>
</tr>
<tr>
<td>Бердюжский</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-летки</td>
<td>12,1</td>
<td>11,0</td>
</tr>
<tr>
<td>2-летки</td>
<td>1,2</td>
<td>1,5</td>
</tr>
<tr>
<td>Среднее, %</td>
<td>9,9</td>
<td>13,6</td>
</tr>
</tbody>
</table>

Так, в разнотравном типе леса наиболее благоприятные условия для прорастания семян и укоренения входов создаются в северной лесостепи в пределах абсолютной полноты древостоя 15-26 м² и сомкнутости травостоя от 11 до 20%, а лучшая сохранность входов на второй год – в пределах полнот древостоя 23-30 м² и сомкнутости травостоя – от 16 до 25%. В типичной лесостепи семена берёзы лучше прорастают при полноте древостоя от 19 до 26 м² и сомкнутости травостоя от 16 до 25%. В типичной лесостепи семена берёзы лучше прорастают при полноте древостоя от 19 до 26 м² и сомкнутости травостоя от 16 до 25%. В типичной лесостепи семена берёзы лучше прорастают при полноте древостоя от 19 до 26 м² и сомкнутости травостоя от 16 до 25%.
нотности травостоя от 11 до 25%, а лучшая сохранность исходов на второй год наблюдается при полноте древостоя от 23 до 30 м² и сомкнутости травостоя от 16 до 25%. Таким образом, для семенного потомства бёре́з в типичной лесосо́стии на засолнённых почвах с более резкими перепадами температуры воздуха в вегетационный период необходима более высокая сомкнутость древостоя и проектное покрытие почвы травой.

Количественные показатели численности исходов древесных пород первого года посевения и их сохранность на второй год по лесорасстановочным районам, а в пределах районов – на вырубках различной ширине, существенно различаются. Самая высокая численность исходов бёре́з – 614,6 шт./м² – установлена в северной лесосети в Тобольском лесоуправлении (Упоровский лесхоз) при ширине исходов 15 м, а самая низкая – 351,6 шт./м² при такой же ширине вырубки – в Берёзовском лесорасстановочном районе типичной лесосети (Киевский лесхоз). Это в 1,7 раз ниже в сравнении с Тобольским лесорасстановочным районом. Среднее положение по численности исходов (481,4 шт./м²) занимает Омутинский район северной лесосети. Сохранность исходов бёре́з на второй год при ширине исходов 15 м, по лесорасстановочным районам составляет от 27 до 32,5%. Это различие относительных показателей несущественно. С увеличением ширины исходов до 30 м численность исходов первого года посевения по отношению к 15-метровой ширине снижается в 1,1-2,7 раза, а при увеличении ширины до 60 метров – в 3,9-5,9 раза. При этом на 60-метровой вырубке началось засыпание. Более существенное снижение численности и сохранности исходов установлено в типичной лесосети. По нашему мнению, снижение численности исходов связано с такими факторами как различие в почво-климатических условиях между северной и типичной подзонами лесов, а также расположение лесосек и вырубок относительно сторон света. Результаты эксперимента также не подтверждают распространенное на производстве мнение о том, что численность исходов и подроста бёре́з не зависит от ширины лесосек. Более того, в настоящее время все лесосеки сплошных производственных рубок в отличие от нашего эксперимента длинной стороной ориентированы с севера на юг. В этом случае в лесостепной и степной зонах в полуденные часы солнце создает на вырубках неблагоприятные микроклиматические условия для прорастания семян и выживания исходов древесных растений особенно бёре́з.

На процессы возобновления семенной бёре́зы большое влияние также оказывают сроки минерализации поверхности почвы и лесной подстилки. Например, в Упоровском лесоуправлении (Тобольский лесорасстановочный район) бородая минерализация поверхности почвы под пологом древостоя после равномерно-постепенной рубки была произведена на одной из делянок в конце июля, на второй в начале августа, а на третьей в начале октября. В конце октября был произведён учет однолетних исходов бёре́з и установлена их численность на первой делянке – 72,7 шт./м², на второй – 6,7 шт./м², а на третьей – 15, шт./м², т.е. почти в 48 раз меньше, чем на первой делянке. На второй год сохранность исходов составила на первой делянке 12,5% (9,1 шт./м²), на второй – 33% (2,2 шт./м²), а на третьей делянке исходы отсутствовали.

При визуальных наблюдениях процессов распространения семян бёре́з и укоренения проростков было установлено, что летом в начале разлета семян наибольшее его количество накапливается на дне в центре борозды и на отвалах, но осенью на этих участках лесосек и вырубок они почти все погибают. На дне борозд семена вымокают, а с отвалов частично смываются дождем. На вырубках всходы на отвалах погибают от иссушения почвы. Семена активно прорастают, а всходы бёре́з хорошо сохраняются в бревне борозд под защитой растущего по краям минерализованной поверхности почвы травостоев, если его проектное покрытие не превышает 20-25%. При большой сомкнутости травостоя численность исходов первого года посева существенно снижается, а весной на второй год после минерализации, всходы почти все погибают под влажным травами. Следовательно, для успешного семенного возобновления бёре́з, необходимо делать неглубокие минерализованные полосы, а лесную подстилку и почву удалять дальше от бровки минерализованной борозды в среднем ряде.

При оценке возобновления бёре́зы на промышленных вырубках прошлых лет установлено, что во всех лесорасстановочных районах при наличии в составе материнского древостоя осины, процесс возобновления идёт со сменой бёре́з на осину и на 5-летних вырубках осина преобладает или участает в составе молодняков. Бёре́з в составе молодняков всегда бывает смешанного семенного и вегетативного происхождения, но с разной долей участия каждого из них (табл. 5,7). Это зависит от возраста срубленного материнского древостоя, урожай семян и сезона года рубки древостоя. На лесосеках зимней заготовки древесины исходы семенной бёре́зы появляются в урежальный год на погруженных площадках, а их численность обычно находится в пределах от 200 до 400 шт./га. На лесосеках летней рубки численность экземпляров семенной бёре́зы увеличивается примерно в 3 раза. На этих вырубках семенная бёре́за встречается на волоках, погруженных площадках и очень редко в пасеках лесосек. Но даже в этом случае численность порослевых экземпляров всегда больше числа семенных в 2,7-16,2 раза. Таким образом, для повышения численности подростов бёре́зы семенного происхождения необходимы меры содействия естественному возобновлению в составе всех лесорасстановочных районов лесостепной зоны. Для по-боброгенеративной способности бёре́зы в возрасте её технической спелости (55-60 лет) наиболее благоприятные условия созданы в Тобольском лесорасстановочном районе, здесь самая большая численность пней с порослью (71,8 %) и наибольшее среднее число поросления на одном пне (15,8 шт.). С продвижением на юго-восток эти показатели заметно снижаются.
<table>
<thead>
<tr>
<th>Лесорастительный район</th>
<th>Вегетативное происхождение подроста</th>
<th>Семенное происхождение</th>
<th>Всего подроста</th>
<th>Состав подроста</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>по деревьям с проросшими корневищами</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тоболо-Исетский</td>
<td>450</td>
<td>6,0</td>
<td>23000</td>
<td>25700</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>6,8</td>
<td>2900</td>
<td>5688</td>
</tr>
<tr>
<td>Омутинский</td>
<td>299</td>
<td>4,7</td>
<td>1255</td>
<td>2660</td>
</tr>
<tr>
<td></td>
<td>438</td>
<td>7,3</td>
<td>302</td>
<td>1842</td>
</tr>
</tbody>
</table>

В Бердюжском районе среднее число пней с порослью составляет 52,3%, а число порослей на одном пне – 6,2 шт. Вероятно это связано с более высокой температурой воздуха и понижённой влажностью почв в типичной лесостепи.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Анализ материалов лесоустройства, литературных источников и учета лесного фонда по изучению состава, структуры и состояния спелых и перестойных древостоя, процессов естественного возобновления за последние 52 года, а также экспериментальные исследования с 2000 по 2004 г. в четырех лесорастительных районах лесостепной зоны на 8 стационарных опытных объектах позволяет сделать следующие выводы:

1. В последние 40-летний период после интенсивного лесопользования на юге Тюменской области к 2003 г. на 441,4 тыс. га сохранялась площадь пойменных лесов сухих в условиях создания лесных культур, мероприятий по созданию естественного возобновления, а также возобновления естественным путем, выщелачиванием площадей и оврагов запаса, а у лиственных береэи и осины вместе он возрос более, чем в 1,5 раза. При этом наиболее высокие темпы накопления запаса наблюдались у осины, ее запас за 40-летний период увеличился более чем в 2 раза.

2. Березовые насаждения в лесостепном тюменском Зауралье сформировались в основном в травяной и травяно-болотной группах типов леса. Березники разнотравные, где по отдельным лесам занимают площадь от 46 до 79%, травяно-болотные от 18 до 42%.

3. Разновозрастность в строении березняков наблюдается на всей территории лесостепной зоны. При этом разновозрастность и преобладание в составе древесных древостоя деревьев переросленного вегетативного происхождения возрастает в меридиональном направлении от Тоболо-Исетского лесорастительного района сосново-березовых трансформированных лесов к Бердюжскому гриво-озерному району с мелкоколючными березовыми лесами.

4. Разновозрастные березовые древостоя, состоящие из 2-3 возрастных поколений, формировались длительный период времени. Вероятно, после вырубки древостоев или сильного верхового пожара первое поколение имеет смешанное вегетативно-семенное происхождение. Оно могло образоваться из сохранившегося подроста и вегетативного возобновления, второе поколение смешанного происхождения. Это, скорее всего, связано с под логом разреженного древостоя на отдаленном участке в результате полное возобновление, третье поколение возникло в результате рубок ухода или выборочных рубок главного пользования вегетативным путем.

5. В березовых лесах лесостепной зоны ширина и направление лесосек относительно среднестатистического значения. На лесостепных, расположенных с севера на юг, процесс возобновления березы и развитие травостоя происходит практически одинаково при любой ширнике, поэтому лесосеки целесообразно располагать с запада на восток для снижения интенсивности развития травянистой растительности и защиты всходов берез от губительного влияния солнечной радиации.

6. На лесостепях численность подроста березы с семенами происходления существенно снижается от северо-западной границы подтаежных лесов до юго-восточной границы северной лесостепи. Процесс возобновления и сохранности подроста лучше идет на минерализованной почве в плужных бороздах. Однако здесь на его динамику существенное отрицательное влияние оказывают иссушение верхнего горизонта почвы в возобновительный период и периодичность плодоношения березы.

7. Для процессов естественного семенного и порослевого возобновления березы оптимальной полнотой следует считать 0,6-0,7. При более высоких полнотах подрост березы быстро погибает от недостатка света, а при полнотах 0,5 и ниже развитие травянистой растительности и интенсивность задернивания почвы под пологом древостоя происходит почти так же, как на вырубках после сплошной рубки древостоя.

8. После обработки почвы лесокультурными орудиями, а также на неиспользуемых землях сельскохозяйственного назначения семенное возобновление березы в лесостепи появляется через 1-3 года и, как правило, на субстрате из опада кустарникового травостоя в период снижения его активного развития.

9. Во всех лесорастительных районах порослевая способность древостоя березы после 60-летнего возраста резко снижается. Березняки УП класса возрастной структуры не имеют жизнеспособного подроста и частично или полностью утрачивают способность возобновляться вегетативным путем. После вырубок таких древостоя происходит смена биома преимущественно на корнеотпрысковую осину. В связи с этим необходимо снизить возраст рубок главного пользования в березняках на 1-2 класса возрастов в сравнении с существующим и 70-80 лет, когда вместо посадки и товарной структуры березняков в
лесостепной зоне, а также их санитарное состояние, особенно в подзоне типичной лесостепи становится удовлетворительным.

На основании научных и экспериментальных исследований нами разработаны:
- Проект наставления по рубкам обновления и переформирования в березняках лесостепной зоны Заураля;
- Технологии несплошных рубок обновления и переформирования, на которые получен приоритет в Институте промышленной собственности России.
- Два орудия для минерализации почвы на вырубках и под пологом древостоя, на которых получен патент в Институте промышленной собственности России.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

6. Свидетельство № 11647 МКИб А 01 B 33/00 Рабочий орган для минерализации лесных почв/ Г.М. Куликов, А.В. Мехренцев, А.Г. Захаров, А.Г. Турлов (РФ). № 99110574/20; Заявл. 24.05.99. Бюл. №11.

7. Свидетельство № 11949 МКИб А 01 В 33/02 Рабочий орган для обработки почв/ Г.М. Куликов, А.В. Мехренцев, А.Г. Захаров, А.Г. Турлов (РФ). № 99112528/20; Заявл. 16.12.99. Бюл. №12

8. Справочник обновления хвойных насаждений, приоритет № 200410287.

9. Справочник обновления и переформирования березовых насаждений, приоритет № 2004102613.

Подп. в печать 04.11.05. Объем 1.0 п.л., заказ А 4... Тираж 120 экз.

620032 г. Екатеринбург, Сибирский тракт 37.
Уральский государственный лесотехнический университет
Отдел оперативной полиграфии