ВЛИЯНИЕ ФТОРСОДЕРЖАЩИХ ПРОМЫШЛЕННЫХ ВЫБРОСОВ НА СОДЕРЖАНИЕ ОКСИПРОЛИНА В АССИМИЛЯЦИОННЫХ ОРГАНАХ ДРЕВЕСНЫХ РАСТЕНИЙ

Присутствие свободного оксипролина, не связанного с белком, не свойственно большинству растений (Савицкая, 1976). 90% оксипролина растительной клетки входит в состав белка клеточной стенки — экстенсина, большая часть которого в виде гликопротеида включается в стенку в процессе растяжения (Либберт, 1976).

Литературные данные о содержании оксипролина в растениях единичны и противоречивы (Шевякова, 1983; Ivanova, 1982; Karolewski, 1983).

С целью выявления влияния фтористых выбросов на обмен экстенсина и тем самым на процесс роста клеток растяжением изучалось содержание оксипролина в ассимиляционных органах древесных растений.

Объектами исследований являлись лесные культуры сосны и естественные молодняки березы и осины (10-20 лет), произрастающие на расстоянии от 1,5 км до 4,5-7 км от источника промышленных фтористых выбросов, а также в районах, не подвергающихся действию данных газов; насаждения сосны отнесены по типу леса к сосняку разнотравному. Характеристика участков забора образцов ассимиляционных органов растений в летний и осенний периоды 1985 г. представлена в табл. 1. Участки забора расположены к северо-востоку от источника выбросов по направлению преобладающих ветров. Образцы листьев березы и осины отбирались и на более близком расстоянии от источника выбросов (0,6 км), где сосна отсутствует, а деревья березы и осины имеют характерную карликовую форму с выраженной суховершинностью, кущением деревьев и ожогами листьев газами в конце лета. На каждом участке отбирались ассимиляционные органы 10 деревьев с юго-западной стороны кроны в конце июня и во второй половине сентября 1985 г.

Ассимиляционные органы от 10 деревьев одной породы с каждого участка высушивали в термостате при 105°С, измельчали до гомогенного состояния, и из них по модифицированному нами методу (Бабушкина, Глумова, 1986) было проанализировано 4—9 проб по 300 мг.

Контролем служили две зоны вне действия фтористых соединений. В первой контрольной зоне (участок V) отбирались образцы листьев березы, осины (июнь, сентябрь) и хвои сосны первого года жизни (июнь), во второй зоне (участок VI) — образцы хвои сосны первого, второго, третьего годов жизни (сентябрь).

Таблица 1 Характеристика опытных участков

Показатель древостоев	Номер участка и расстояние от источника выбросов, км						
сосны	l 1,5—1,7	11 2—2,5	111 3—3,5	IV 4—4,5	V 60	VI 150	
Категория участка	Распавшие- ся культуры, деревья рас- положены небольши- ми куртина- ми	ные молод-	деревья разм		сосны сомкнуті		
Густота, тыс/га	≈0,7	≈1,0	≈4,0	≈4,0	≈4,0	≈4,5	
Состав	5С5Б	10C	4С3Б30с	10C	10C	10C	
Возраст, лет	30	30—35	20	25	26	30	
Высота, м	4	6	5,5	9,5	13	14	
Диаметр на высоте 1,3 м, см	2,5	8	4,5	9	10	10	
Продолжитель- ность жизни хвои, лет	1—2	1—2	2, реже 3	2—3	3—4	3—4	
Побурение кон- чиков хвои, мм	15—20	12—15	8	6—8	_	_	
Суховершинность, % Напочвенный	Более 50	[`] 50	_	_		_	
покров	Злаки	Злаки	Разно- травье	Разно- травье	Разно- травье	Разно- травье	

Результаты проведенных исследований показали, что с увеличением расстояния от источника выбросов изменяется видовой состав древостоев (табл. 1). На расстоянии до 1 км встречаются лишь лиственные породы — в основном осина, береза, ива. Начиная с 1 км встречаются отдельные деревья сосны под защитой лиственных в очень угнетенном состоянии. По мере удаления от источника выбросов сосны становится больше. С увеличением расстояния от источника выбросов уменьшается степень поражения ассимиляционных органов растений, возрастает продолжительность жизни хвои сосны, увеличиваются средние годовые приросты деревьев по диаметру и высоте.

Таблица 2

Содержание общего оксипролина в ассимиляционных органах древесных растений, мкг/г [М±m, n=7—9]

_ 1	№ участка	Расстояние	Время сбора образцов		
Порода		от источника выбросов, км	июнь	сентябрь	
Береза	ı	0,6—0,7	957,3±6,1	952,1±8,9*	
· ·	11	1,7—2,0	896,6±33,7	868,8±14,4	
	HI	3,0—3,5	796,7±11,9*	797,5±9,8*	
	IV	6,0—7,0	1154,9±30,6°	976,3±6,2*1	
Контроль	٧	60,0	943,5±58,8°	872,5±30,4	
Осина	1	0,60,7	628,6±19,7*	486,4±15,9*	
	11	1,7—2,0	574,1 ± 17,6*	482,5±7,5+	
	111	3,0—3,5	603,4±27,7°	437,9±12,7*	
	IV	6,0—7,0	$706,9 \pm 25,7^{\circ}$	390,5±5,6*	
Контроль	V	60,0	496,0±11,8	496,3±11,7	
Сосна	1	0,6—0,7	_	_	
	Н	1,7—2,0	$316,7 \pm 20,8$	_	
	111	3,03,5	$316,2 \pm 25,7$	_	
	17	4,0—4,5	$350,3 \pm 11,4$	-	
Контроль	V	60.0	$338,1 \pm 22,2$	_	

Примечание:

В ассимиляционных органах деревьев с контрольных участков концентрация оксипролина самая высокая в листьях березы, а самая низкая — в хвое сосны первого года жизни в летний период года (табл. 2). В листьях березы и осины концентрация оксипролина не меняется в сентябре по сравнению с июнем, а в хвое сосны первого года жизни она возрастает почти в два раза в сентябре по сравнению с июнем (табл. 2, 3). Вероятно, к концу июня (1985 г.) стабилизировался метаболизм экстенсина и закончился процесс роста клеток растяжением у исследованных лиственных пород, в то время как в хвое сосны процесс роста растяжением более длителен. В хвое сосны второго и третьего годов жизни концентрация оксипролина не отличается от таковой в хвое первого года жизни (см. табл. 3). Под влиянием действия фтористых выбросов концентрация оксипролина в листьях березы статистически значимо понизилась в оба срока исследования на III участке (3—3.5 км от завода) и повысилась на IV (6—7 км), на более близком расстоянии от завода (І и ІІ участки) она не отличалась от контрольного уровня (см. табл. 2).

^{* —} различия показателей между контролем и опытным участком статистически значимы (P>0;05);

^{+ —} то же между периодами года для каждого участка.

Таблица 3 Содержание оксипролина в хвое сосны разного возраста, мкг/г $\{M\pm m, n=3-4\}$

№ участка	Расстояние от источника выбросов, км	Возраст хвон, лет			
		1	2	3	
1	1.7—2.0	672,1 ±46,4**	619,7±7,5 [†]	545,9±22,3*	
i ii l	2,5	560,6±19,2*	613,0±13,2 ⁺	591,8±15,8*	
- 111	3,0—3,5	462,6±3,4**	$483,2 \pm 24,3$ *	456,6±4,5*	
IV	4,0-4,5	618,9±18,1**	572,7±15,5**	603,6±15,4	
VI	150	601,6±19,8*	$661,1 \pm 23,2^{\circ}$	655,8 ± 12,8	

Примечание.

- различия показателей между контролем и опытными участками статистически значимы (P<0,05);
- + то же в хвое разного возраста.

Содержание оксипролина в листьях осины существенно повышалось в летний период во всех исследованных зонах действия фтористых выбросов и снижалось до контрольных величин в осенний период года. Вероятно, в период активного роста фтористые соединения стимулируют синтез оксипролинсодержащих белков в листьях осины. Концентрация оксипролина достоверно снизилась лишь в осенний период на III участке (3-3,5 км от источника выбросов), на остальных участках она не отличалась от контроля. Причем на расстоянии 3-3,5 км концентрация оксипролина существенно снизилась в хвое сосны всех возрастов. Это может свидетельствовать о подавлении синтеза экстенсина и задержке роста хвои растяжением под влиянием фтористых соединений. С увеличением возраста хвои более заметно снижение концентрации в ней оксипролина под влиянием фтористых выбросов. Так, если в хвое первого года жизни снижение уровня оксипролина выявлено в одной лишь зоне (3—3,5 км), в хвое второго года жизни в двух зонах (3-3,5 км и 4-4,5 км), то в хвое третьего года жизни — во всех четырех исследованных зонах действия фтористых выбросов (см. табл. 3). Чем ниже уровень оксипролина в хвое, тем в большем количестве хвоинок и на большей площади отмечается побурение кончиков (см. табл. 1).

Результаты биохимических исследований согласуются с таксометрическими: на расстоянии 3—3,5 км от источника загрязнения отмечена меньшая высота деревьев и их меньший диаметр на высоте груди (см. табл. 1) по сравнению с зоной, удаленной от загрязнения на расстояние 2—2,5 км.

Уменьшение содержания оксипролина в ассимиляционных органах исследуемых пород деревьев, особенно сосны, в зонах действия фтористых выбросов обусловлено, по-видимому, подавлением синтеза экстенсина в клетках, в результате чего происходит торможение роста клеток растяжением. Наше предположение согла-

суется с мнением ряда авторов (Савицкая, 1976; Шевякова, 1983), которые связывают накопление пролина в клетках при остановке и задержке роста растений с торможением окислительной деградации пролина, т. е. с подавлением синтеза оксипролинсодержащих белков.

Результаты исследований позволили выявить разнонаправленный характер изменения концентрации оксипролина в ассимиляционных органах изученных растений под влиянием фтористых выбросов, для объяснения отмеченных сдвигов необходимо продолжение исследований.

выводы

Концентрация оксипролина самая высокая в листьях березы и самая низкая в хвое сосны в летний период года. У деревьев, не подвергающихся действию фтористых выбросов в летне-осенний период года, концентрация оксипролина в листьях березы и осины не меняется, а в хвое сосны возрастает к осени.

Под влиянием фтористых выбросов происходит снижение уровня оксипролина в хвое сосны в осенний период, наиболее выраженное с увеличением возраста хвои, и возрастание содержания оксипролина в листьях осины в летний период.

Выявлено снижение содержания оксипролина в ассимиляционных органах березы, осины, сосны, произрастающих на расстоянии 3—3,5 км от источника фтористых выбросов.

Ослабление устойчивости сосны под влиянием фтористых выбросов может быть обусловлено подавлением образования оксипролина в хвое.

ЛИТЕРАТУРА

Бабушкина Л. Г., Глумова В. А. Определение оксипролина в растительной ткани//Информационный листок Свердловского ЦНТИ. Свердловск, 1986. № 11—86.

Либберт Э. Физиология растений. М.: Мир. 1976. 580 с.

Савицкая Н. Н. О физиологической роли пролина в растениях//Биол. науки. 1976. № 2. С. 49—61.

Шевякова Н. И. Метаболизм и физиологическая роль пролина в растениях при водном и солевом стрессе//Физиол. растений. 1983. Т. 30, вып. 4. С. 768—783.

Ivanova A. Prolinakkumulation — Reaktion von Pflanzen auf StreBsituationen// Wiss Z. Techn. Univ. Drezden. 1982. Bd 31. H. 5. S. 273—275.

Karolewski P. Influens of SO₂ on changes in the content of prolineand hydroxyproline in the leaves of rooted Weigela cuttings// Acta Soc. bot. pol. 1984. Vol. 53. № 2. P. 237—245.