

Рис. 3. Диаграмма разбухания различных ДСтП

6. Меньшее водопоглощение во всех технолгических вариантах наблюдается, как и ожидалось, у плит на фенолоформальдегидной смоле.

В целом можно сделать вывод, что введение наносеребра в древесностружечные плиты сказывается на физико-механических показателях плит. Наилучшими показателями обладает плита с добавлением наносеребра в связующие на основе фенолоформальдегидной смолы.

### УДК 667.646.42

#### Е.И. Стенина, А.Р. Мухамедзянов

(E.I. Stenina, A.R. Muhamedzyanov) (УГЛТУ, г. Екатеринбург, РФ) E-mail для связи с авторами: sten\_elena@mail.ru

# ИССЛЕДОВАНИЕ АДГЕЗИИ ЛКП НА МОДИФИЦИРОВАННОЙ НАНОСЕРЕБРОМ ПОДЛОЖКЕ

## STUDY ON THE ADHESION OF COATINGS TO RETROFIT NANOSEREBROM SUBSTRATE

Приведены результаты исследований по изучению адгезии ЛКП на основе органикорастворимой НЦ-композиции и водорастворимой акриловой дисперсии покрытия из наносеребра на подложке, модифицированной наноразмерным серебром.

The results of studies on the adhesion of COATINGS on the basis of organikor-astvorimoj SC-compositions and water-soluble acrylic dispersion of nano-silver coating on a substrate modified nanoscale silver.

Для повышения качества и долголетия древесину покрывают лакокрасочными материалами (ЛКМ), которые обладают как защитными, так и декоративными эффектами. Срок службы лакокрасочных покрытий (ЛКП) в жестких условиях составляет максимум 6 лет — этого недостаточно. Целесообразно сначала повысить защищенность древесины за счет обработки биоцидами, а затем уже ЛКМ.

При обработке 10 %-м раствором коллоидного наносеребра, обладающим фунгицидным действием, увеличивается срок службы древесины, повышаются защитные

характеристики, а также сохраняется эстетика древесины, что немаловажно. Таким образом, для решения практических задач необходимо выделить вклад физических или химических факторов на сцепление массивной древесины с ЛКП. Часто достаточно представлять, как тот или иной фактор влияет на условия образования адгезионной связи и ее поведение в процессе эксплуатации конкретного изделия. В связи с этим стоит учитывать, что в местах общественного пользования при постоянных жестких условиях эксплуатации древесины долговечность ее и адгезия ЛКМ очень важны.

Согласно электрической и молекулярной теориям адгезии коллоидный раствор «АgБион-2», содержащий ионы металла, может повлиять на отрыв пленки, находящейся на границе раздела фаз — за счет наличия противоположных зарядов и увеличения прочности связей между отдельными молекулами (возрастает дипольный момент). В результате адгезия ЛКП изменится на модифицированной подложке.

Также на величину межмолекулярных связей и заряд обкладок молекулярного электрического двойного слоя может повлиять используемый растворитель ЛКМ (органического происхождения или нет). Поэтому интерес представляет изучение адгезии ЛКП, сформированной, например, нитроцеллюлозным лакокрасочным материалом и ЛКМ алкидного типа на модифицированной наносеребром подложке.

Кроме этого, на адгезию (прочность связей) может повлиять длительность выдержки рабочего раствора коллоидного наносеребра с момента изготовления. Поэтому целесообразно изучить влияние и этого фактора на адгезию ЛКП.

Целью исследований являлось изучение адгезии ЛКП на основе органикорастворимой НЦ-композиции и водорастворимой акриловой дисперсии на подложке, модифицированной 10 %-м коллоидным раствором наносеребра. Постоянные и переменные факторы проведенных экспериментов приведены в таблице 1.

Таблица 1 Методическая сетка эксперимента

| Фактор                                                     | Значение              |  |  |  |  |
|------------------------------------------------------------|-----------------------|--|--|--|--|
| Постоянные факторы                                         |                       |  |  |  |  |
| Количество образцов                                        | 56                    |  |  |  |  |
| Порода древесины                                           | Сосна                 |  |  |  |  |
| Шероховатость по ГОСТу 7016-82, мкм                        | Не более 250          |  |  |  |  |
| Влажность, %                                               | 9–12                  |  |  |  |  |
|                                                            | Капиллярный           |  |  |  |  |
| Способ защитной обработки подложки                         | (нанесение кистью)    |  |  |  |  |
| Защитное средство                                          | «АgБион-2»            |  |  |  |  |
| Концентрация защитного средства                            | 10 %                  |  |  |  |  |
| Продолжительность выдержки после нанесения защитного сред- | 1                     |  |  |  |  |
| ства, час                                                  |                       |  |  |  |  |
| Кратность нанесения ЛКМ                                    | 2                     |  |  |  |  |
| Продолжительность выдержки после нанесения ЛКМ, час        | 24                    |  |  |  |  |
| Переменные факторы                                         |                       |  |  |  |  |
| Наличие защитной обработки                                 | Есть; нет             |  |  |  |  |
| Срок с момента изготовления рабочего раствора, сут.        | 0; 19                 |  |  |  |  |
| Используемый ЛКМ                                           | НЦ-132; аквалак «БОР» |  |  |  |  |

Определение адгезии ЛКП осуществлялось методом параллельных надрезов. Сущность метода заключается в нанесении на готовое лакокрасочное покрытие параллельных надрезов и визуальной оценке состояния покрытия по трехбалльной системе (табл. 2).

Таблица 2

## Оценка адгезии ЛКП

|      | Описание поверхности                         |                      |  |
|------|----------------------------------------------|----------------------|--|
| Балл | лакокрасочного покрытия после нанесения      | Внешний вид покрытия |  |
|      | надрезов и снятия липкой ленты               |                      |  |
| 1    | Края надрезов гладкие                        |                      |  |
| 1 2  | Незначительное отслаивание пленки по ши-     |                      |  |
|      | рине полосы вдоль надрезов (не более 0,5 мм) |                      |  |
| 3    | Отслаивание покрытия полосами                |                      |  |

Анализируя результаты экспериментов, можно сделать следующие выводы:

- 1) адгезия эмали НЦ-132 хорошая как на подложке, модифицированной свежим и старым растворами наносеребра, так и на контрольных образцах (1 балл) (табл. 3);
- 2) адгезия аквалака «БОР» на модифицированной подложке хорошая (1 балл), в то время как на контрольных образцах она ниже (в среднем 1,2 балла);
- 3) удержание старого расхода выше чем свежее на 28,2 %, что можно объяснить снижением поляризации ионов наносеребра (см. рисунок);

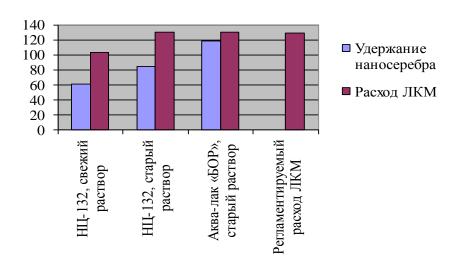



Диаграмма расхода ЛКМ на подложке, модифицированной наносеребром

4) расход различных типов ЛКМ на подложке, модифицированной старым раствором коллоидного наносеребра, близок к регламентируемому производителем (130 г/м $^2$ ), но значительно выше чем на подложке, обработанной свежим раствором. Следовательно, тип ЛКМ существенно не влияет на его расход в случае нанесения на подложку, модифицированную старым раствором;

Таблица 3 Результаты оценки адгезии ЛКП на модифицированной подложке

| № партии | Среднее                          | Средний расход        | Оценка        | Средний балл |
|----------|----------------------------------|-----------------------|---------------|--------------|
| образцов | удержание $Y$ , г/м <sup>2</sup> | ЛКМ, $\Gamma/M^2$     | адгезии, балл |              |
|          |                                  | Эмаль НЦ-132          |               |              |
|          | Свеж                             | ий раствор наносеребр | ра            |              |
| 1.1      | 46,88                            | 96,88                 | 1             | 1            |
| 1.2      | 75,00                            | 109,38                | 1             |              |
|          | Стар                             | ый раствор наносереб  | ра            |              |
| 2.1      | 52,08                            | 115,63                | 1             | 1            |
| 2.2      | 117,70                           | 145,80                | 1             | 1            |
|          | Ko                               | онтрольные образцы    |               |              |
| 1        |                                  | 42,19                 | 1             |              |
| 2        | _                                | 42,19                 | 1             | 1            |
| 5        | -                                | 70,32                 | 1             |              |
|          |                                  | Аквалак «БОР»         |               |              |
| 3.1.1    | 143,75                           | 137,50                | 1             |              |
| 3.1.2    | 143,75                           | 137,50                | 1             |              |
| 3.1.3    | 143,75                           | 137,50                | 1             |              |
| 3.1.4    | 143,75                           | 137,50                | 1             |              |
| 3.1.5    | 143,75                           | 137,50                | 1             |              |
| 3.1.6    | 143,75                           | 137,50                | 1             | 1            |
| 3.2.1    | 94,79                            | 124,79                | 1             |              |
| 3.2.2    | 94,79                            | 124,79                | 1             |              |
| 3.2.3    | 94,79                            | 124,79                | 1             |              |
| 3.2.4    | 94,79                            | 124,79                | 1             |              |
| 3.2.5    | 94,79                            | 124,79                | 1             |              |
| 3.2.6    | 94,79                            | 124,79                | 1             |              |
|          | Ко                               | онтрольные образцы    |               |              |
| 3        |                                  | 187,20                | 1             | 1,2          |
| 4        | _                                | 143,75                | 1             |              |
| 5        | _                                | 23,44                 | 3             |              |

5) удержание защитного средства при однократном нанесении свежеприготовленного раствора наносеребра значительно ниже (29,8 %) благодаря, вероятно, большей активности ионов серебра. Этим же обстоятельством возможно объяснить и меньший расход ЛКМ на подложке, обработанной свежим раствором наносеребра.

В целом, можно сделать вывод, что модификация древесины сосны 10 %-м коллоидным раствором наносеребра не сказывается на адгезии ЛКМ различных типов. Пролонгация срока использования рабочего раствора «АдБион-2» в технологическом процессе защитной обработки древесины до 19 суток нецелесообразна, т.к. влечет перерасход нанесенного ЛКМ, а также из-за возможного снижения биологической активности препарата.

Увеличение толщины ЛКП существенно не скажется на ее защитных качествах, т.к. с увеличением толщины покрытия возрастает вероятность разрушения пленки — вследствие роста внутренних напряжений (при старении покрытия), которые суммируются с температурно-влажностными деформациями подложки.