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ALGEBRA AND GEOMETRY OF MULTICHANNEL IMAGES. 

PART 2. ORTHO-UNITARY TRANSFORMS, WAVELETS AND SPLINES 

Introduction 

We present a new theoretical framework for multidimensional image processing using 

hypercomplex commutative algebras that codes color, multicolor and hypercolor. In this pa-

per a family of discrete color–valued and multicolor–valued 2–D Fourier–like, wavelet–like 

transforms and splines has been presented that can be used in color, multicolor, and hyper-

spectral image processing. In our approach, each multichannel pixel is considered not as an 

K–D vector, but as an K–D hypercomplex number, where K is the number of different optical 

channels. Orthounitary transforms and splines are Centaurus (specific combination) of or-

thogonal and unitary transforms. It is known that Centaurus is a combination of half–man and 

half–horse. By this reason we can called an ortho–unitary (color) transform as a Centaurus of 

orthogonal and unitary transforms. We present several examples of possible Centuaruses: 

Fourier+Walsh, Complex Walsh+Ordinary Walsh and so on. We collect basis functions of 

these transforms in the form of iconostas (in a Russian orthodox church, the ”Iconostas” is 

literally the ”Stand of Icons” that rise up at the front of the Sanctuary). These transforms are 

applicable to multichannel images with several components and are different from the classi-

cal Fourier transform in that they mix the channel components of the image. They can be used 

for multichannel images compression, interpolation and edge detection from the point of view 

of hypercomplex commutative algebras.  

 

Orthounitary transforms for color images processing 

 

Classical Fourier analysis based on the orthogonal and unitary transforms plays an im-

portant role in digital image processing. Transforms, notable the classical Discrete Fourier 

Transform (DFT), are extensively used in digital image processing (filtering, power spectrum 

estimation, and so on). A natural question that arises in our approach is the definition of color 

and multicolor transforms that can be used efficiently in color and multicolor image pro-

cessing. We propose a wide library of so–called orthounitary (color–valued or multicolor–

valued) Fourier transforms for using in image compression, processing, and pattern recogni-

tion applications. 

2-D discrete color (NxN)-image  
, 1

: ( , )
N

i j
i j


f f  can be defined as a 2-D (NxN)-array 

in the (R,G,B) or (LC) formats (Greaves, 1847; Labunets et al., 2016):   
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where 2

NZ  is 2-D (NxN)-array. Here, every color pixel ( , )i jf  at position  ji,  is a triplet 

number in (R,G,B)- or in LC-formats, respectively and 
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is norm of the image ( , )i jf .  

All images  
, 1

: ( , )
N

i j
i j


f f  form 2N -dimension space over the triplet algebra: 

 
2

3lg
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VisAl . We say the operator  

   
2 2

2 3 3:
N N

Vis Vis

D Alg AlgL  (or 
2D col col
   f FL ) 

is ortho-unitary if it conserves the norm of color images.  

Remark 1. It should be noted that orthogonal transforms keep the norm of real-valued 

(gray-level) images, unitary transforms keep the norm of complex-valued (bichromatic) imag-

es. For this reason, ortho-unitary transforms are a generalization of orthogonal and unitary 

transforms for color images.  

LC format ortho-unitary transforms can be constructed with help an orthogonal 
2DO  

and unitary 
2DU  transforms  2 2 2 2 2,D D lu D ch D D  O e U E O UL . The simplest form of or-

tho-unitary transform for image processing is a separable 2-D transform formed from two 1-D 

transforms by tensor product     2 1 2 1 2 ,D lu ch   O O e U U EL  where   is the symbol of 

tensor product.  

Application of separable transforms reduces the problem of designing efficient ortho-

unitary 2-D transforms to a one-dimensional problem. It is possible to use one pair of orthog-

onal and unitary transforms, when 
1 2 O O O   and 

1 2 U U U . Every pair  ,O U  of an 

orthogonal O  and an unitary U   transforms generates ortho-unitary (triplet-valued) 1D 

1D lu ch Oe UEL  and 2-D ortho-unitary transforms:    2D lu ch   O O e U U EL . They 

are Centaurus of orthogonal and unitary transforms.  

Remark 2. It is known that Centaurus is a combination of half-men and half-horse. 

By this reason we can called an ortho-unitary (color) transform as a Centaurus of orthogonal 

and unitary transforms (Labunets-Rundblad et al., 2003a,b).  

Some examples of possible Centuaruses (ortho–unitary transforms) are shown in the 

Table 1, where W, Hd, Ht, Hr, Wv are Walsh, Hadamard, Hartley, Haar, and Wavelet or-

thogonal transforms, respectively, and F , W , Hd , Wv  are Fourier, complex Walsh, com-

plex Hadamard and complex wavelet transforms, respectively.  

Table 1: Centauruses of orthogonal and unitary transforms 

 F  W  Hd  Wv  

W  lu ch  W e F E  
lu ch  W e W E  lu ch  W e Hd E  lu ch  W e Wv E  

Hd  lu ch  Hd e F E  
lu ch  Hd e W E  lu ch  Hd e Hd E  lu ch  Hd e Wv E  

Ht  lu ch  Ht e F E  
lu ch  Ht e W E  lu ch  Ht e Hd E  lu ch  Ht e Wv E  

Hr  lu ch  Hr e F E  
lu ch  Hr e W E  lu ch  Hr e Hd E  lu ch  Hr e Wv E  

Wv  lu ch  Wv e F E  
lu ch  Wv e W E  lu ch  Wv e Hr E  lu ch  Wv e Wv E  
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is ortho-unitary transform, where  
1 2

1 2 1 2
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are 2N  orthogonal and unitary basis (  N N -pictures). We are going to collect them in the 

form of iconostas (in a Russian orthodox church, the "Iconostas" is literally the "Stand of 

Icons" that rise up at the front of the Sanctuary). For example, Iconostasis of Walsh, Cosine 

and Haar transforms shown in Fig. 1. Some examples of Iconostasis of Centaurus transforms 

shown in Fig. 2.   

 

 

 

Walsh basis of 2-D 

8x8-functions 

Cosine basis 2-D 

8x8-functions 

Haarh basis of 2-D 

8x8-functions 

Figure 1:  Iconostasis of 2D Basis Functions of Orthogonal transforms 

 

Ortho-unitary wavelets 

 

Let  a real–valued mother wavelet ( )R x  and  its scaled and shifted versions 

,

1
( ) ,   , ,  0R R

s

x
x s R s

ss


  
     

 
 

 

(4) 

form an orthogonal basis of the space  2L R . We define the chromatic wavelet as the follow-

ing (Labunets-Rundblad et al., 2001;  Labunets et al., 2002): 

 Re Re Re Im

, , , , ,

Re Im

( ) ( ) ( ) ( ) ( )

1 1
,

Ch

s s s s sx x j x x i x

x x
i

s ss s

             

      
      

   

H

                                 (5) 
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Color Walsh+Complex 

Walsh  basis of 2-D 

4x4-functions 

Color Walsh+Fourier 

basis  of 2-D  

4x4-functions 

Color Hartley+Fourier  

basis of 2-D  

3x3-functions 

 

 

 

Color Walsh+Fourier  

basis of 2-D  

8x8-functions 

Color Hartley+Fourier  

basis of 2-D  

8x8-functions 

Color Haar+Fourier  

basis of 2-D 

8x8-functions 

 

  

Color ComplWalsh+Walsh   

basis of 2-D  

8x8-functions 

Color Goley+Fourier   

basis of 2-D  

9x9-functions 

Color Haar+Fresnel  

basis of 2-D  

9x9-functions 

 

where  Im Re

, ,( ) : ( )s sx x   H  is the Hilbert transform of the real–valued mother wavelet (4). 

Now we construct triplet–valued (color) wavelet basis by 

 
, , ,

Re Re

, , ,

( ) ( ) ( )

( ) ( ) ( ) .

Col lu Ch

s s lu s Ch

lu

s lu s s Ch

x x x

x x j x

  

  

      

        
 

e E

e EH
                                                      (6) 
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where , ( )lu

s x is a real–valued wavelet basis for luminance terms and , ( )Ch

s x  is a complex–

valued wavelet basis for chromatic term. We can take 
Re

, ,( ) ( ).lu

s sx x     In this case we obtain 

a color wavelet generated by a single real-valued wavelet 
Re

, ( )s x : 

 

   

Re Re Re

, , , ,

Re Re

, ,

( ) ( ) ( ) ( )

( ) ( ) .

Col

s s lu s s Ch

s lu Ch s Ch

x x x j x

x j x
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 

          
 

      

e E

e E E

H

H
                                           (7)  

We define 2-D direct triplet–valued (color) continuous orthounitary wavelet transform 

(COUT) by 

1 1 2 2 , ,

1 2

1
( , , , ) ( , ) ( ) ( ) .col Col Col

COUT col s sF s s x y x y dxdy
s s

 

 

 

      f                                         (8) 

Examples of chromatic and triplet–valued wavelets are shown in Fig. 3. They are Centaurus 

of orthogonal and unitary wavelets. 

 

 

 

Real and imaginary parts of  

chromatic 1-D Haar wavelet 

Chromatic and color  

2-D Haar wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Daubechies-2 wavelet 

Chromatic and color  

2-D Daubechies-2 wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Daubechies-4 wavelet 

Chromatic and color  

2-D Daubechies-4 wavelet 
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Real and imaginary parts of  

Chromatic 1-D Daubechies-6 wavelet 

Chromatic and color  

2-D Daubechies-6 wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Symlet-4 wavelet  

Chromatic and color  

2-D Symlet-4 wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Meyer wavelet 

Chromatic and color  

2-D Meyer wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Morlet wavelet 

Chromatic and color  

2-D Morlet wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Koif-1 wavelet  

Chromatic and color  

2-D Koif-1 wavelet 
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Real and imaginary parts of  

chromatic 1-D Koif-2 wavelet 

Chromatic and color  

2-D Koif-2 wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Gauss-1 wavelet 

Chromatic and color  

2-D Gauss-1 wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Gauss-2 wavelet 

Chromatic and color  

2-D Gauss-2 wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Gauss-3 wavelet 

Chromatic and color  

2-D Gauss-3 wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Gauss-4 wWavelet 

Chromatic and color  

2-D Gauss-4 wavelet 
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Real and imaginary parts of  

chromatic 1-D Keys wavelet  

Chromatic and color  

2-D Keys wavelet 

 

 

Real and imaginary parts of  

chromatic 1-D Mexican hat wavelet  

Chromatic and color  

2-D Mexican hat wavelet 

Fig 3. Examples of chromatic and triplet–valued wavelets. From left to right: 1) real part 

of chromatic wavelet, 2) imaginary part of chromatic wavelet, 3) chromatic wavelet as a 

function of two spatial coordinates, 4) triplet-valued wavelet as a function of two spatial 

coordinates (third axis is intensity, surface is colored according to chromatic component 

values) 

 

Ortho-unitary B-splines 

Similarly to color wavelets, it is possible to construct the color splines. Let ( )Spl x  be a real–

valued spline. We define the complex–valued (chromatic) spline as an analytic signal: 

 Re Re Re Im( ) ( ) ( ) ( ) ( ),ChSpl x Spl x j Spl x Spl x iSpl x   H                               (9) 

where  Im Re( ) ( )Spl x Spl x H  is the Hilbert transform of the real–valued spline. Now we con-

struct triplet–valued (color) wavelet basis by 

 Re Re( ) ( ) ( ) ( ) ( ) ( ) .Col lu Ch lu

lu Ch lu ChSpl x Spl x Spl x Spl x Spl x j Spl x
         
 

e E e EH         

(10) 

where ( )luSpl x  is a real–valued wavelet basis for luminance term and ( )ChSpl x  is a complex–

valued wavelet basis for chromatic term. We can take Re( ) ( ).luSpl x Spl x  In this case, we 

have 

 

   

Re Re Re

Re Re

( ) ( ) ( ) ( )

( ) ( ) .

Col

lu Ch

lu Ch Ch

Spl x Spl x Spl x j Spl x

Spl x j Spl x

      
 

    

e E

e E E

H

H
                              (11) 

Let ( )BSpl x  be, for example, a B–spline. B–splines are symmetrical, bell shaped functions 

constructed from a rectangular pulse: 
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0

1, 1/ 2 1/ 2,

( ) 1/ 2, | | 1/ 2,  

0, otherwise

x

BSpl x x

  


 



 

     

(12) 

by  1 0( ) * ( )n nBSpl x BSpl BSpl x , where *  is the symbol of convolution. By this reason the 

color B–spline has the following form: 

 

   

Re Re Re

Re Re

( )

( ) ( ) ( )

( ) ( ) .

Col

n

n lu n n Ch

n lu Ch n Ch

BSpl x

BSpl x BSpl x j BSpl x

BSpl x j BSpl x



      
 

    

e E

e E E

H

H

 
    (13) 

Examples of chromatic and triplet–valued splines are shown in Fig. 4. They are Centaurus of 

real-valued and complex-valued splines. 

 

 

Real and imaginary parts of  

chromatic 1-D B-Spline BSpl-0 

Chromatic and color  

2-D BSpl-0 

 

 

Real and imaginary parts of  

chromatic 1-D BSpline BSpl-1 

Chromatic and color  

2-D BSpl-1 

 

 

Real and imaginary parts of  

chromatic 1-D B-Spline BSpl-2 

Chromatic and color  

2-D BSpl-2 
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Real and imaginary parts of  

chromatic 1-D B-Spline BSpl-3 

Chromatic and color  

2-D BSpl-3 

 

 

Real and imaginary parts of  

chromatic 1-D B-Spline BSpl-4 

Chromatic and color  

2-D BSpl-4 

 

 

Real and imaginary parts of  

chromatic 1-D Sinc-Spline  

Chromatic and color  

2-D Sinc-Spline 

Figure 4 : Examples of chromatic and triplet–valued splines. From left to right: 1) real 

part of chromatic spline, 2) imaginary part of chromatic spline, 3) chromatic spline as a 

function of two spatial coordinates, 4) triplet-valued spline as a function of two spatial 

coordinates (third axis is intensity, surface is coloured according to chromatic compo-

nent values) 

 

Edge detection 

One of the primary applications of this work could be in edge. For the edge detection, we 

convolve the color  33 -masks  ,col i jM  with color image  ,col i jf . We use color 

Prewitt's-like masks for detection of horizontal, vertical, and diagonal edges. As entries in-

stead of real numbers these masks have triplet numbers: 
2 2

2 2

2 2 2 2

    1       1 0 1       0    0   1

   0    0    0 ,  0 ,  1    0 ,  1   0 .

1 0 0 1 0

H V LD RD

col col col col

           
       

               
                     

M M M M

 

We see that triplet color detector is realized without multiplications. Fig. 5 shows result of 

color edge detecting 

 
Fig. 5: Color edge detector. Left: original image, right: detected edges. 
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Conclusion 

In this study we define new methods of constructing triplet–valued (color) wavelets and 

splines. They are based on triplet algebra and Hilbert transform of signal. Also we presented 

new techniques for constructing fast Haar–like wavelet transforms and showed that effective 

computation requires image transforms to be considered in both RGB– and LC–formats. It is 

our aim to show that the use of hypercomplex algebras fits more naturally to the tasks of 

recognition of multicolor patterns than does the use of color vector spaces. Further work will 

be concentrated on application aspects of obtained results. 
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