Электронный архив УГЛТУ

студентов, по которому Минвуз оценивает качество подготовки специалистов в вузе;

- ввести подготовку и переподготовку преподавателей экономических дисциплин на региональном уровне. С учетом научной и производственной специализации субъектов Российской Федерации;
- в систему изучаемых в технических вузах экономических дисциплин ввести курс цифровой экономики и издать стабильный учебник по этому курсу.

Библиографический список

- 1. Цифровая экономика: новый план ГОЭЛРО или предвыборная фишка? URL: https://www.business-gazeta.ru/article/350724.
- 2. Постановление Совнаркома СССР и ЦК ВКП(б), 23 июня 1936 г. «О работе высших учебных заведений и о руководстве высшей школы». Решения партии и правительства по хозяйственным вопросам (1917–1967 гг.). М.: Издательство политической литературы. Т. 2. (1929–1940 гг.). С. 588–599.

УДК 378.14:674.05

В.Г. Новоселов

ФГБОУ ВО «Уральский государственный лесотехнический университет», г. Екатеринбург

ПОДГОТОВКА КАДРОВ ДЛЯ ЦИФРОВЫХ ТЕХНОЛОГИЙ ДЕРЕВОПЕРЕРАБАТЫВАЮЩИХ ПРОИЗВОДСТВ

Изложены основные этапы, проблемы и перспективы обучения цифровым технологиям деревообрабатывающих производств.

Ключевые слова: деревообрабатывающие производства, цифровые технологии, обучение.

V.G. Novoselov

Ural State Forest University, Yekaterinburg

TRAINING FOR DIGITAL WOODWORKING TECHNOLOGIES

The main stages, problems and the prospects of training for digital technologies of wood processing productions are stated.

Key words: woodworking productions, digital technologies, training.

В последние годы цифровые технологии все глубже проникают в такую, казалось бы, далекую от них сферу, как переработка древесины. Перестали быть экзотикой программные продукты для компьютерного проектирования изделий из древесины и процессов их изготовления от мебельных наборов до деревянных коттеджей [1]. На форуме «Современные технологии деревообработки» отмечалось: «Деревообрабатывающая отрасль становится наукоемким сегментом экономики. Автоматические линии, станки с ЧПУ, компьютерное моделирование – это уже необходимость, а не исключение на деревообрабатывающих предприятиях» [2]. Программным управлением оснащаются современные станки для выработки из пиловочного сырья досок и брусьев, станки для обрезки и продольного раскроя пиломатериалов, станки для форматного раскроя плитных материалов, много-осевые фрезерные и токарные станки, лазерно-гравировальные машины. Технологи-деревообработчики сегодня озадачены уже не просто проблемами применения, но и оптимизации обработки изделий на станках с ЧПУ [3]. Такое широкое применение программируемого оборудования требует соответствующей подготовки кадров для деревоперерабатывающих производств.

В УГЛТУ уже с начала двухтысячных годов студентам-деревообработчикам (механикам и технологам) на кафедре станков и инструментов преподавалась дисциплина «Специализированное и автоматизированное оборудование деревообрабатывающих производств». Первоначально обучение велось преимущественно теоретически, с использованием только статического демонстрационного материала, но уже в 2006 г. университетом были приобретены фрезерный трех-осевой станок и лазерно-гравировальная машина с компьютерным управлением. Наличие такого оборудования позволило начать формировать у студентов не только теоретические знания о принципах работы современного компьютеризированного производства, но и прививать компетенции и практические навыки разработки управляющих программ и наладки станков с ЧПУ. Появились первые учебные и учебно-методические пособия [4, 5].

Следующим шагом в развитии обучения цифровым технологиям стало приобретение университетом за счет целевой субсидии комплекса программно-технических средств, состоящего из лицензионной программы «CAD/CFM система ADEM», десяти автоматизированных рабочих мест оператора-наладчика станков с ЧПУ PASKAL APM-Stepper CNC, исследовательского учебного робота-манипулятора PASKAL OMEGA 1-3X(H)-USB с прямоугольной системой координат и настольного учебного токарного станка с компьютерной

системой ЧПУ PASKAL HTC-1. Это позволило бы значительно расширить возможности ведения образовательной деятельности по освоению методов и средств компьютерного проектирования и изготовления изделий.

Однако в ходе проведенной в 2013 г. реорганизации факультетов МТД и ЛИФ с образованием кафедры инновационных технологий и оборудования деревообработки была прекращена подготовка бакалавров-механиков по профилю «Оборудование, инструмент и процессы механической и физико-технической обработки», а в связи с переходом на двухуровневую подготовку – и инженеров-механиков по специальности «Машины и оборудование лесного комплекса». В структуре современного российского станкостроения деревообрабатывающее оборудование в натуральном выражении (штук) составляет около ²/₃ от общего количества [6], а производством его занято, по данным «Продуктцентр.ру» [7], около 30 организаций. Поэтому прекращение подготовки механиков-деревообработчиков отрицательно скажется не только на абитуриентском престиже УГЛТУ, но и на кадровой обеспеченности, а также – на решении проблемы имортозамещения в деревообрабатывающем станкостроении.

Произошедшие негативные изменения потребовали пересмотра учебных планов и программ учебных дисциплин: в дисциплину «Оборудование отрасли», преподаваемую бакалаврам-технологам профессором Глебовым И.Т., был включен раздел по основам программирования обработки на станках с ЧПУ, вновь разработан курс для магистрантов «Деревообрабатывающее оборудование с ЧПУ». Под руководством доцента Красикова А.С. при активном участии магистранта Колосова И.С. запущен в эксплуатацию класс на десять рабочих мест оператора-наладчика станков с ЧПУ, осваивается программный пакет «САD ADEM» по компьютерному проектированию изделий. В перспективе — разработка образовательной программы бакалавриата, связанной с автоматизированным проектированием изделий и их обработки на станках с ЧПУ.

Библиографический список

- 1. Кондратьев Ю.Н. Деревообработка: автоматизированное проектирование мебели: учеб. пособие / Ю.Н. Кондратьев, А.В. Питухин, С.Б. Васильев, В.М. Костюкевич. Петрозаводск: Изд-во ПетрГУ, 2012. 64 с.
- 2. Форум «Современные технологии деревообработки» / Журнал «ЛесПромИнформ», № 6 (80), 2011 г. [Электронный ресурс] URL:

Электронный архив УГЛТУ

http://lesprominform.ru/jarchive/articles/itemshow/2416 (дата обращения 01.03.2018).

- 3. Ахунова Л.В., Гараева А.Ф. Оптимизация процесса фрезерования на станках с ЧПУ // Деревообрабатывающая промышленность. 2016. № 3. C. 15–17.
- 4. Глебов И.Т., Кузнецов А.И. Оборудование отрасли. Устройство фрезерных станков с ЧПУ и основы их программирования: метод. указ. Екатеринбург: УГЛТУ, 2013. 19 с.
- 5. Глебов И.Т. Учимся работать на фрезерном станке с ЧПУ: учеб. пособие. Екатеринбург: УГЛТУ, 2015. 115 с.
- 6. Григорьев С.Н. Перспективы развития отечественного станкостроения в интересах обеспечения технологической независимости российского машиностроения // Станкоинструмент. 2017. № 1 (006). C. 18-23.
- 7. Производители деревообрабатывающих станков и оборудования // Продуктцентр.ру. [Электронный ресурс] URL: https://productcenter.ru/ producers/catalog-dierievoobrabatyvaiushchieie-oborudovaniie-209 обращения: 09.06.2017).

УДК 378.147:004

О.В. Бердюгина

ФГБОУ ВО «Уральский государственный аграрный университет», г. Екатеринбург С.В. Ляхов

ФГБОУ ВО «Уральский государственный лесотехнический университет», г. Екатеринбург

АСПЕКТЫ ПРИМЕНЕНИЯ ДИСТАНЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ ТЕХНОЛОГИЙ В ВЫСШЕМ ОБРАЗОВАНИИ

Информатизация образовательного процесса в университете является одним из важнейших механизмов, влияющих на основные направления модернизации всей образовательной системы. Поэтому новая форма обучения – дистанционное обучение, основанная на современных информационно-коммуникационных технологиях, позволяет не только учиться, но и повышать квалификационный уровень.

Ключевые слова: дистанционное образование, экономическое образование, аспекты образования.