Электронный архив УГЛТУ

Таким образом, проведенные исследования показывают, что механохимическая обработка приводит к частичной деполимеризации целлюлозных материалов и разупорядочению структуры их твердой фазы. Эти факторы должны благоприятствовать повышению их реакционной способности для последующей химической модификации в качестве сорбентов и носителей.

УДК 620.197.3

Б.Н. Дрикер, С.А. Тарасова, И.П. Сикорский (В.N. Drieker, S.A. Tarasova, І.Р. Sikorskiy) УГЛТУ, Екатеринбург (USFEU, Ekaterinburg)

ПРИМЕНЕНИЕ КОМПОЗИЦИЙ НА ОСНОВЕ ОРГАНИЧЕСКИХ ФОСФОНАТОВ В ВОДОПОДГОТОВКЕ (THE USE OF ORGANOPHOSPHONATE-BASED COMPOSITIONS IN WATER TREATMENT)

Описано создание реагента для одновременного ингибирования коррозии и солеотложений на основе ГМДТФ.

Preparation GMDTF based agent for simultaneous corrosion and scale inhibition.

Созданию систем оборотного водоснабжения препятствуют процессы образования солеотложений, коррозии и биообрастаний.

Целью исследований являлось создание реагента многоцелевого назначения для одновременного ингибирования коррозии и солеотложений на основе гексаметилендиаминтетраметиленфосфоновой кислоты (ГМДТФ) [1].

Исследовались композиции ГМДТФ с солями цинка при мольных соотношениях исходных ГМДТФ:Zn(2+) 4:1 ÷ 2:1 соответственно.

Для выяснения способности этих реагентов ингибировать коррозию обработке подвергали техническую воду Северского трубного завода г. Полевской (жесткость 2,5 мг-экв/л, жесткость кальциевая 2,0 мг-экв/л, щелочность 1,5 мг-экв/л, скорость коррозии 0,22 мм/год \pm 5%). Скорость коррозии измеряли с помощью прибора «Эксперт 004», выпускаемого ОАО «Эконикс эксперт» [2], при температуре 20°С, скорости перемешивания 1,2 м/сек, в непроточной ячейке двухэлектродными измерительными зондами, изготовленными из стали марки ст. 3. Полученные данные представлены в табл. 1.

Электронный архив УГЛТУ

Таблица 1 Влияние реагентов различного состава на скорость коррозии стали марки ст. 3 в технической воде Северского трубного завода

		Концентрация реагента, мг/л						
	Мольное соотно-	2	5	10	15	20		
Реагент	шение	Коэффициент торможения коррозии,						
	ГМДТФ:Zn (2+)	раз						
ГМДТФ	без Zn(2+)	-	1,3	2,1	4,6	-		
Γ МД T Ф + ком-	2:1	2,4	4,8	8,4	10,6	27		
плекс Zn(2+)	2.1							
Γ МД T Ф + ком-	3:1	2,1	4	6,7	7,8	25		
плекс Zn(2+)	3.1							
Γ МД T Ф + ком-	4:1	2	3,5	5,5	6,9	21,5		
плекс Zn(2+)								

Из данных, приведенных в таблице 1, видно, что исследованные реагенты способны эффективно подавлять процессы коррозии в средах с высокой начальной коррозионной активностью, при этом композиции на основе ГМДТФ значительно эффективнее реагентов на основе ИОМС для воды такого же качества [3].

Очевидно, что это обусловлено спецификой физико-химических свойств ГМДТФ (наличием двух независимых сфер комплексообразования и, как следствие, преимущественным образованием биядерных комплексов независимо от соотношения ГМДТФ: Zn(2+), оптимальной прочностью подобных комплексов, необходимой для обеспечения эффективности ингибирования коррозии с их помощью, присутствием в молекуле гексаметиленового мостика, что может придать соединению некоторую гидрофобность и др.) и, очевидно, требует специальных исследований.

Оценку эффективности полученных композиций в качестве ингибиторов солеотложений проверяли по известной методике на примере кристаллизации сульфата кальция.

Перенасыщенный раствор сульфата кальция ($C_{CaSO4}=6,5\div8,5\ г/л$) готовили смешением эквивалентных растворов сульфата натрия и хлорида кальция. Процесс кристаллизации изучали при температуре 40^{0} С и перемешивании ($Re_{II}=12500$). Полученные результаты представлены в табл. 2.

Из данных, приведенных в таблице 2, видно, что использование композиций с цинковым комплексом при всех исследованных мольных соотношениях исходных $\Gamma M \Box T \Phi : Zn(2+)$ не оказывает отрицательного влияния на эффективность этих композиций в качестве ингибиторов отложений минеральных солей, при этом рабочие концентрации в 3-4 раза ниже традиционно используемых для аналогичных целей композиционных составов.

Электронный архив УГЛТУ

Таблица 2 Влияние композиций различного состава на параметры зародышеобразования сульфата кальция

Реагент	Концентрация реа- гента, мг/л	Удельная поверх- ностная энергия, б, мДж/м²	Радиус критического зародыша, г, нм	Порядок реакции за- родышеобразования, п	Константа скорости зародышеобразования, \mathbf{r}^{-n} л n с $^{-1}$. 10^{17}
ГМДТФ	0,25	14,0	0,71-0,85	15,2	8,5
ГМДТФ:Zn (+2) 4:1	0,25	13,9	0,7-0,84	14,9	8,1
ГМДТФ:Zn (+2) 3:1	0,25	13,7	0,69-0,8	14,9	8,0
ГМДТФ:Zn (+2) 2:1	0,25	13,7	0,69-0,8	14,7	7,8

На основании проведенных исследований разработано техническое задание для проектирования систем оборотного водоснабжения дуговой сталеплавильной печи ОАО «Северского трубного завода».

Библиографический список

- 1. Дрикер, Б.Н. Предотвращение минеральных отложений и коррозии металла в системах водного хозяйства с использованием фосфорсодержащих комплексонов [Текст]: дис. ...докт. техн. наук: 11.00.11 / Дрикер Борис Нутович. Свердловск, 1991. 459 с. .
- 2. Ануфриев, Н.Г. [Текст] / Н.Г. Ануфриев, Е.Е. Комаров, Н.Е. Смирнова // Коррозия. Материалы. Защита. 2004, N 1. С. 42-47.
- 3. Дрикер, Б.Н. [Текст]/ Б.Н. Дрикер, И.П. Сикорский, Н.В. Цирульникова // Практика противокоррозионной защиты. 2007, № 1 (43). С. 39-43.