Новоселов В.Г. Основы конструирования подъемно-транспортных машин. Презентация

Учебно-наглядное издание

Приведены виды и классификация подъемно-транспортных операций, классификация и характеристики свойств перемещаемых грузов, типы грузоподъемных кранов, общие сведения об использовании грузоподъемных машин, структура механизмов, расчеты и проектирование механизмов.

Ключевые слова: машины грузоподъемные; кран; механизм подъема; механизм передвижения; механизм поворота; устойчивость.

Объем 86 слайдов.

Екатеринбург 2018

ОСНОВЫ
КОНСТРУИРОВАНИЯ
ПОДЪЕМНОТРАНСПОРТНЫХ МАШИН

Профессор Новоселов Владимир Геннадьевич

Структура дисциплины

- Лекции 16 часов;
- Практические занятия 16 часов;
- Лабораторные работы 16 часов;
- Самостоятельная работа;
- Зачет по выполненным заданиям и тестовому контролю.

Рекомендуемая литература

1. Поскребышев В.А., Кузнецов В.С., Денисов С.В., Исько А.Б. Машины и механизмы для перемещения грузов на предприятиях лесопильно- деревообрабатывающей промышленности: Учебное пособие. – Братск: ГОУ ВПО «БрГУ», 2006.

(URL https://www.twirpx.com/file/979082/)

2. Краны для лесных грузов: Атлас конструкций: Учеб. пособие / Под общ. ред. В. Ф. Виноградова, Л. А. Шабалина; Урал. гос. лесотехн. ун-т. - Екатеринбург: УГЛТУ, 2001. - 122 с.

(Библиотека УГЛТУ)

3. Справочник по расчетам механизмов подъемно-транспортных машин / А.В. Кузьмин, Ф.Л. Марон. - 2-е изд., перераб. и доп. - Минск : Вышэйшая школа, 1983. - 350 с.

(URL https://www.twirpx.com/file/2423738/)

- 4. Курсовое проектирование грузоподъемных машин : учебное пособие для студентов машиностроительных специальностей вузов / С. А. Казак [и др.]; под ред. С. А. Казака. Москва : Высшая школа, 1989. 320 с. (Библиотека УГЛТУ)
- 5. Подъемно-транспортные машины : учебник для студентов машиностроительных специальностей вузов / М. П. Александров. 6-е изд., перераб. Москва : Высшая школа, 1985. 520 с. (Библиотека УГЛТУ)

1.Подъемно-транспортные операции в деревообработке

Подъемно-транспортные операции являются одним из связующих звеньев производства, объединяющих в единые транспортно-технологические потоки отдельные технологические элементы производства.

До 50% всех производственных затрат связаны с перемещениями предмета труда.

Электронный архив УГЛТУ **1.1.Виды и классификация подъёмно**транспортных операций

Все операции по перемещению грузов по характеру выполнения подразделяются на: простые и сложные, циклические и непрерывные

Захват груза и его перемещение ПО прямолинейной траектории

Совокупность перемещений образующих, траекторию в виде ломаной или плавной кривой. Характеризуются периодическим перемещением груза, а оцениваются показателем Т время цикла, включающее в себя время рабочего, холостого хода и остановки

Перемещение груза осуществляется непрерывным потоком посредством машин непрерывного транспорта

По способу выполнения подъемно-транспортные операции делятся на: ручные, механические, пневманические, гидравлические, комбинированные

Выполняются мускульной силой рабочего с использованием приспособлений в виде рычагов, воротов, клиньев, домкратов и т.п.

Используются грузоподъёмные краны, погрузчики, транспортеры и толкатели.

Перемещение материалов или изделий в среде воздушного потока

Перемещение материалов и изделий осуществляется в потоке жидкости

Объединяют пневмомеханические, гидромеханические и другие сочетания различных способов транспортирования

В зависимости от места осуществления подъемно-транспортные операции разделяют на: межцеховые (внутризаводские) и внутрицеховые.

Межцеховые операции используются при доставке сырья, полуфабрикатов на склады, в цехи; транспортировке пиломатериалов, заготовок, плит, отходов и готовой продукции между цехами и складами. Эти операции характеризуются большим разнообразием и большими объемами грузопотока, а так же перемещением на значительные расстояния.

Внутрицеховые операции осуществляют при перемещении заготовок, полуфабрикатов, исходного сырья между станками, рабочими местами и объектами складирования, а также для других видов перемещений внутри цехов. Эти операции характеризуются большим разнообразием, малыми объемами и перемещениями на незначительные расстояния.

По функциональному назначению подъемно-транспортные операции разделяются на:

погрузочно-разгрузочные, транспортные, транспортно-технологические, складирования.

Преимущественно вертикальные перемещения грузов

Преимущественно горизонтальные перемещения грузов

Перемещения грузов сопряжены с преобразованием предмета труда

Перемещения грузов с расположением конечных пунктов в строго определенном порядке, в связи с их характеристиками

Взаимосвязь подъемно-транспортных и технологических операций характеризуются следующими процессами:

Погрузочно-разгрузочными процессами, примыкающими к технологическому, являясь его началом или концом и непосредственно соединенными с последним, при этом одновременно с перемещением выполняется технологическая операция (обработка на станках проходного типа)

Погрузочно-разгрузочными операциями, включающими в себя разгрузку сырья, полуфабрикатов и других грузов с транспортирующих средств на промежуточные площади или на склад

Электронный архив УГЛТУ 1.2.Виды, классификация и характеристика свойств перемещаемых грузов

Грузы на различных участках лесопильно-деревообрабатывающих предприятий имеют разнообразный вид: пачки бревен, доски, стружка, опилки, щепа, бруски, листы фанеры, лакокрасочные материалы, клеевые материалы и т. п.

Различают три группы грузов: штучные, насыпные, наливные.

Древесина в хлыстах, кряжи, пиломатериалы, заготовки, узлы деталей и изделий из древесины, оконные и дверные блоки, ДСтП и прочее. Пакетированные штучные грузы – грузы, уложенные в пачки

или пакеты.

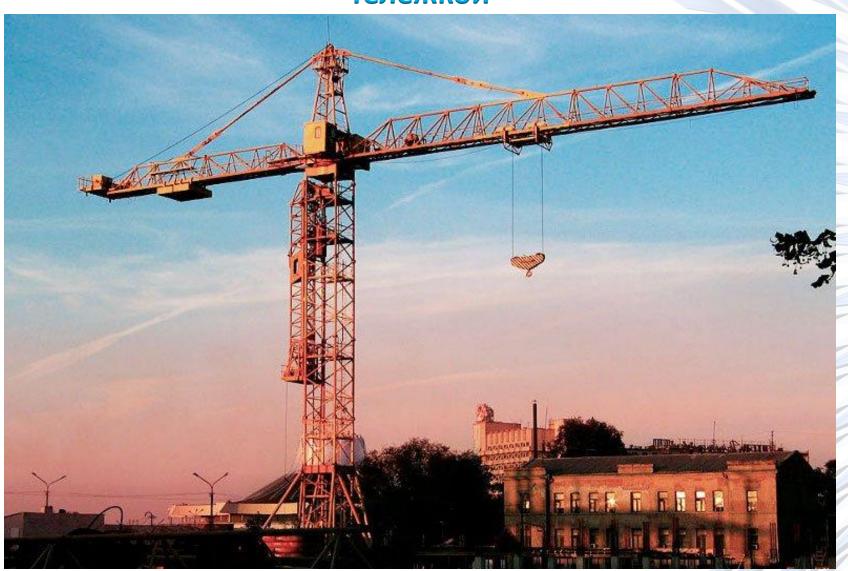
Щепа, опилки, стружка, древесная мука, характеризуются размерами и формой частиц, фракционным составом, плотностью, насыпной массой, углом естественного откоса, влажностью, слеживаемостью и смерзаемостью.

Лаки, краски, растворители, смолы. Транспортируются расфасованными в таре, характеризуются массой и габаритами емкости, в которую они расфасованы, ядовитостью, взрывоопасностью и способностью к самовозгоранию.

2. Грузоподъемные машины (ГПМ) для подъемно-транспортных операций

По своим конструктивно-технологическим признакам грузоподъемные машины подразделяются на:

стреловые, мостовые, козловые, кабельные и подъемники.


Башенные Консольные Автомобильные Железнодорожные Портальные

Подвесные Опорные Двухконсольные Одноконсольные Бесконсольные Полукозловые

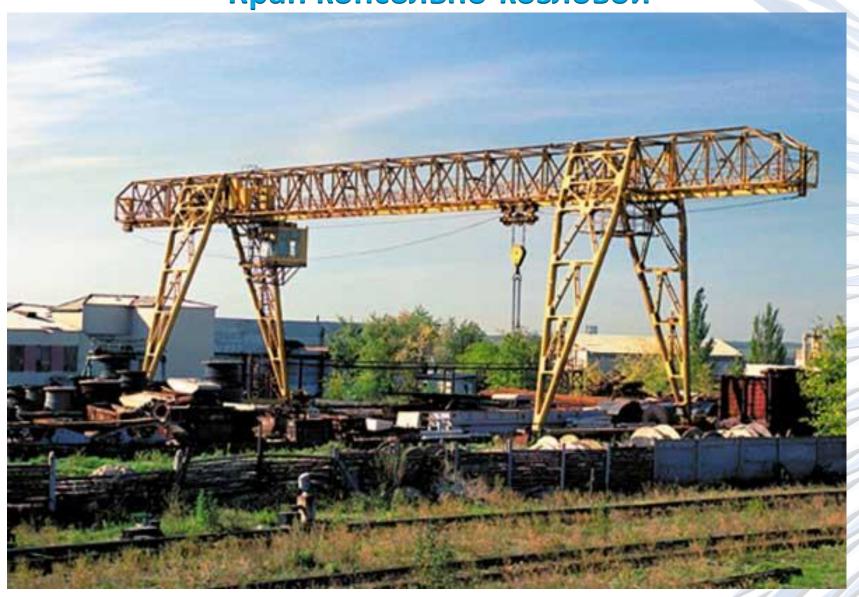
Мачтовые Кабельномостовые

Грузовые лифты

Примеры грузоподъемных машин (ГПМ): Башенный кран с горизонтальной стрелой и грузовой тележкой

Башенный кран с подъемной стрелой

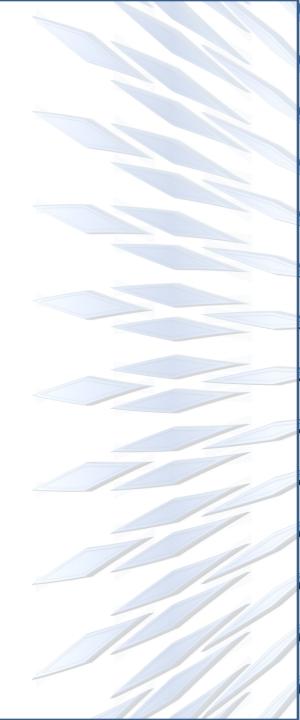
Портальный кран


Мостовой кран опорный

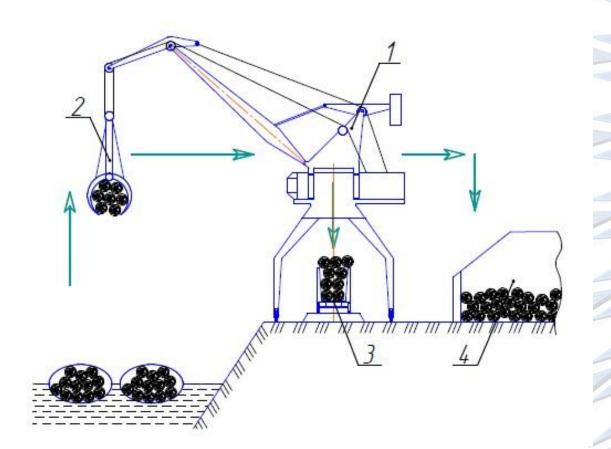
Мостовой кран подвесной

Кран консольно-козловой

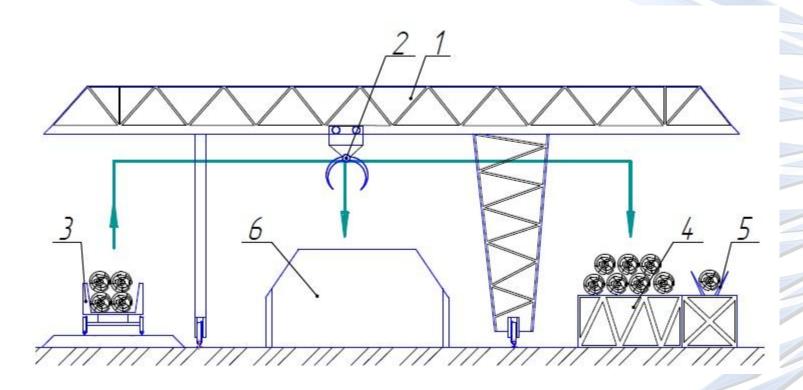
Кран козловой бесконсольный

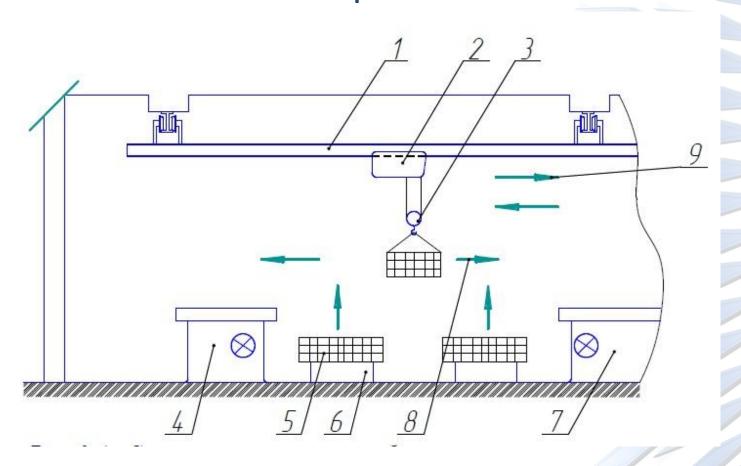


Кабельный кран мачтовый

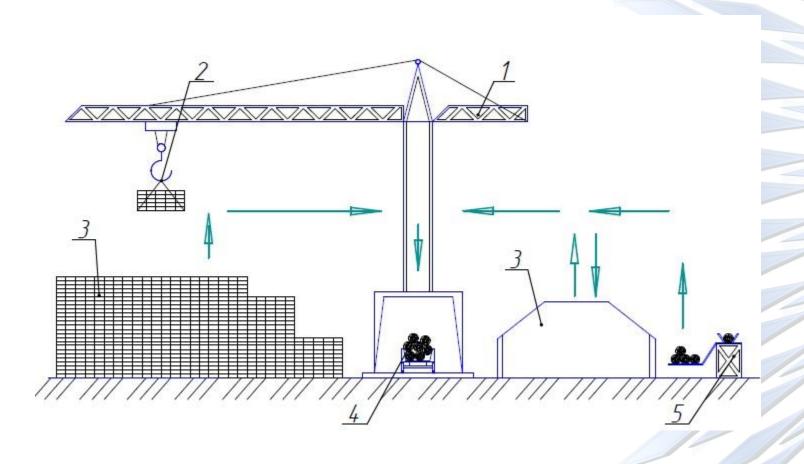

Грузовой подъемник

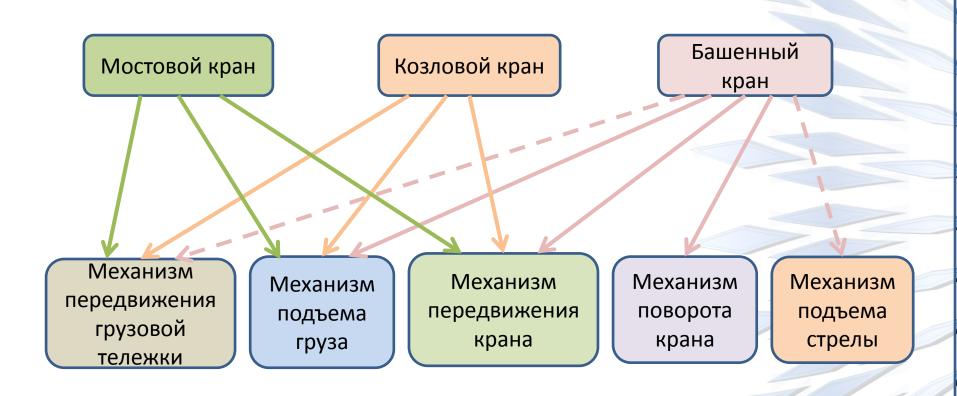
Электронный архив УГЛТУ 2.1. Общие сведения об использовании грузоподъемных машин:


- а) выгрузка лесоматериалов с рейда:
- 1 портальный кран; 2 грузозахватное устройство; 3 -подвижной состав; 4 - штабель


б) перемещение лесоматериала с подвижного состава в штабель или на транспортер:

1 – консольно-козловой кран;


2- грузозахватное устройство; 3 — подвижной состав; 4 - раскатный стол; 5 - транспортер; 6 - штабель.


в) перемещение лесоматериалов из штабеля к станкам: 1- мстовой кран; 2- электроталь; 3- грузозахватное устройство; 4-многопильный станок; 5- штабель; 6- подстопное место; 7- фрезерный станок; 8- перемещение штабеля; 9- перемещение электротали

- Электронный архив УГЛТУ
 г) перемещение груза из штабеля и с транспортера на подвижной состав башенным краном:
- 1 башенный кран; 2 грузозахватное устройство; 3 штабель; 4 – подвижной состав; 5 – транспортер

2.2. Структура механизмов ГПМ

2.3. Режимы работы грузоподъемных машин

При расчете кранов и выборе для них механического и электрического обору-дования, канатов, крюков и других элементов должны быть учтены условия их эксплуатации (режимы работы).

Действующими в настоящее время Правилами по кранам установлено, что группы классификации (режимов работы) кранов и их меха-низмов должны при-ниматься по международному стандарту ИСО 4301/1.

Группы классификации (режима) кранов в целом и их механизмов

Класс использования

Максимальное число рабочих цик-лов крана за за-данный срок службы (общая родолжительность использования механизма)

Режим нагружения

Режим нагружения, характеризую-щий исполь-зование крана по грузоподъемности (распределение нагрузки механизма)

Группы классификации (режима) кранов в целом

	_											
Режим нагружения	Коэффи-	Класс использования										
	циент	$\mathbf{U_0}$	$\mathbf{U_1}$	U_2	U_3	$\mathbf{U_4}$	U_5	U_6	$\mathbf{U_7}$	U_8	U ₉	
	распре- деления	максимальное число рабочих циклов										
	нагру-зо к K _D	1,6 .104	3,2 .104	6,3 .104	1,25 .105	2,5 .105	5.10 ⁵	1.106	2.106	4.106	более 4.10 ⁶	
Q1 — легкий	0,125			A1	A2	A3	A4	A5	A6	A7	A8	
Q2 — уме-рен-ный	0,250		A1	A2	A3	A4	A5	A6	A7	A8		
	0,500	A1	A2	A3	A4	A5	A6	A7	A8			
Q4 — весьма тяжелый	1,000	A2	A3	A4	A5	A6	A7	A8				

$$K_{p} = \sum_{i=1}^{n} \left[\frac{C_{i}}{C_{T}} \cdot \left(\frac{P_{i}}{P_{max}} \right)^{3} \right],$$

где C_i , — среднее число рабочих циклов с частным уровнем массы груза P_i ;

С_т — суммарное число рабочих циклов со всеми грузами;

 $P_{\rm i}$ — значения частных масс отдельных грузов (уровня нагрузки) при типич-ном применении крана;

 P_{max} — масса наибольшего груза (номинальный груз), который разрешается поднимать краном.

Группы классификации (режима) механизмов в целом

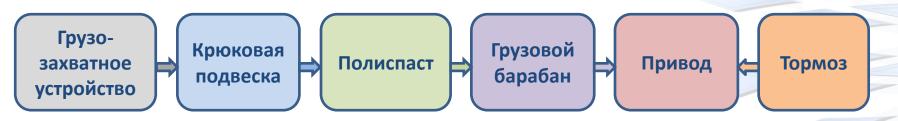
Режим нагружения	Коэффи-ц иент распре- деления нагрузки К _т	Класс использования											
		T ₀	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	T ₉		
		общая продолжительность использования, ч											
		200	400	800	1600	3200	6300	12500	25000	50000	100000		
L1 — легкий	0,125			Ml	M2	М3	M4	M5	Мб	M7	M8		
L2 — уме-рен-ный	0,250		Ml	M2	M3	M4	M5	Мб	M7	M8			
L3 — тяже-лый	0,500	Ml	M2	М3	M4	M5	Мб	M7	M8				
L4 — весьма тяжелый	1,000	M2	M3	M4	M5	Мб	M7	M8					

$$K_{m} = \sum_{i=1}^{n} \left[\frac{t_{i}}{t_{T}} \left(\frac{P_{i}}{P_{max}} \right)^{3} \right],$$

где t_i , — средняя продолжительность использования меха-низма при частных уровнях нагрузки P_i ;

- t_{T} общая продолжительность при всех частных уровнях нагрузки:
- P_{i} , значения частных нагрузок (уровни нагрузок), характерных для приме-нения данного механизма;
- P_{max} значение наибольшей нагрузки, приложенной к механизму.

2.4. Классы ответственности кранов и их элементов

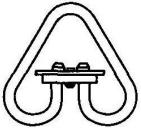

Обозна-	Степень	
чение к	ответ-ст-венности	Наименование крана или элемента
ласса	крана или эле-мента	
1	Особо высо-кая	Краны, транспортирующие опасный груз
		Транспортно-технологические краны
		металлургического произ-водства
		Краны атомных энергетических объектов
		Краны, обслуживающие особо ответственный
		технологиче-ский процесс при отсутствии
		резервирования
		Элементы кранов класса 1: несущая
		металлоконструкция, меха-низм подъема груза и
		передвижения крана и тележки
2	Высокая	Краны, не вошедшие в класс 1.
		Элементы кранов класса 2: несущая
		металлоконструкция, меха-низм подъема груза
3	Нормальная	Элементы кранов класса 2: механизм передвижения
		кранов и те-лежки

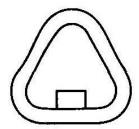
Класс ответственности учитывают при определении показателей, регламенти-рующих расчетные значения нагрузок путем введения коэффициента надежности по назначению.

3. Расчеты и проектирование механизмов ГПМ

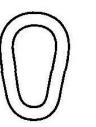
3.1. Механизм подъема груза

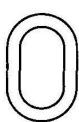
3.1.1. Структура механизма подъема груза

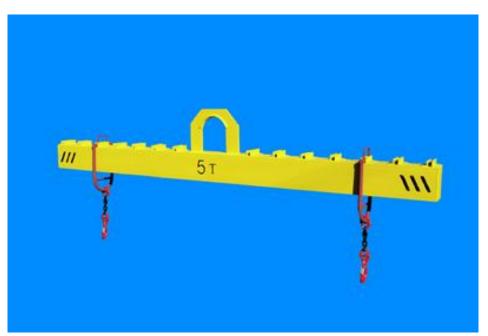



Полиспаст - грузоподъёмное устройство, состоящее из собранных в подвижную и неподвижную обоймы блоков, последовательно огибаемых канатом или цепью, и предназначенное для выигрыша в силе (силовой полиспаст) или в скорости (скоростной полиспаст)

3.1.2. Грузозахватные устройства: крюки; петли; стропы; траверсы; захваты; грейферы


• **Крюк** – в грузоподъёмных машинах и механизмах находят применение кованые (штампованные) и пластинчатые крюки. Они могут цепляться к специальным грузовым винтам (рым-болтам) на оборудовании или в составе стропов, охватывающих груз, замыкаться на петлю.





- Стропы бывают следующих видов:
- 1) канатные, изготовляемые из стальных канатов самые распространенные. Они надежны, в них легче вовремя обнаружить неисправность, но при боль-шой грузоподъемности канатные стропы тяжелые и недостаточно гибкие. Выбираются с 6-кратным запасом прочности.
- 2) **цепные**, изготовляемые из круглозвенных цепей обладают большой гибкостью, но они еще более тя-желые, чем канатные. Цепной строп может внезапно разрушиться вследствие образования и быстрого раскрытия трещины. Выбираются с 4-кратным запасом прочности.
- 3) текстильные, изготовляемые из синтетических канатов и лент легкие, гибкие, не деформируют груз, безопасней в эксплуатации, чем канатные, но они легко повреждаются от поре-зов, открытого огня, сварочных работ и ультрафиолетового излучения. Выбираются с 8-кратным запасом прочности.

Натяжение S в каждой ветви многоветвевого стропа рассчитывают по формуле $S = Q/(n \cos \alpha)$, где n — число ветвей стропа; $\cos \alpha$ — косинус угла наклона ветви стро-па к

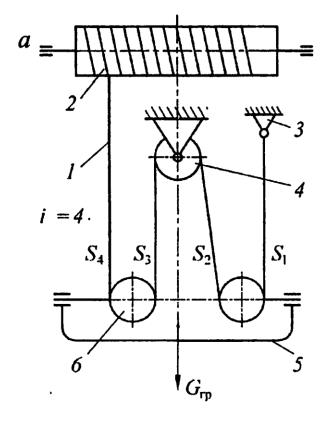
• **Траверсы** - съемные грузозахватные приспособления, предназна-ченные для строповки длинномерных и крупногабаритных грузов. Они предохраняют поднимаемые грузы от воздействия сжимающих усилий, которые возникают при использовании стропов. По конструкции траверсы разделяют на плоскостные и простран-ственные.

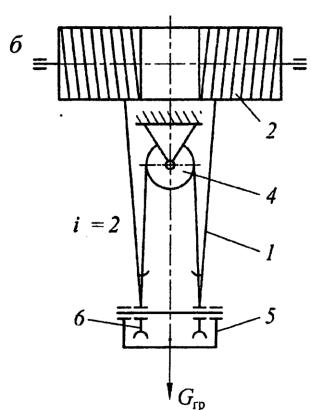
• Захваты - применяют в тех случаях, когда приходится перемещать однотипные грузы. В связи с большим раз-нообразием перемещаемых грузов существует множество различных конструкций захватов.

Захваты:

а — клещевые рычажные на траверсе; б— фрикционный рычажный; в — фрик-ционный рычажноканатный; г — эксцентриковый; д — вилочный; 1 — рычаг; 2 — клеймо; 3 — канат; 4 — эксцентрик • Грейферы — грузозахватно приспособление предпазначенное для извлечения и погрузки навалочных и штучных грузов. Выделяют два основных типа, принципиально отличных по назначению. К первому типу относят грейферные ковши, предназначенные для осуществления погрузочно-разгрузочных работ с сыпучими грузами, ко второму грейферные захваты штучных одиночных и пачечных грузов.

3.1.3. Крюковые подвески


Это грузозахватные органы крана, служащие для соединения грузового крюка с подъёмным канатом. Одновременно они входят в систему полиспаста, имея один или несколько подвижных блоков. Крюковые подвески выбираются по грузоподъемности с учетом группы классификации (режима) механизма



3.1.4. Полиспасты

По количеству ветвей каната приводимых в движение (z) различают одинарные (a) и сдвоенные (б) полиспасты

1- канат; 2-барабан; 3- неподвижный конец каната; 4- неподвижный блок; 5- крюковая подвеска

Кратность, передаточное число и к.п.д. полиспаста

- Кратность полиспаста количество ветвей каната, удерживающих груз (k). В примерах k=4.
- Передаточное число полиспаста отношение скорости каната набегающего на барабан к скорости подема груза.

$$i=\frac{k}{z}$$

• Коэффициент полезного действия полиспаста –

$$\eta_{\Pi} = \frac{\left(1 - \eta^k\right)}{(1 - \eta)k},$$

где η – к.п.д. одного блока (на подшипниках качения η=0,98).

ВЫБОР СХЕМЫ И КРАТНОСТИ ПОЛИСПАСТА

Число грузонесущих ветвей полиспаста

принимаются в зависимости от грузоподъемности

Грузоподъём- ность, т	до 5	510	15	20	30	50	75	100	125
Число грузонесущих ветвей	2	4	4; 6	6; 8	6; 8	8; 10	8; 10	10; 12	10; 12

Натяжение ветви каната, набегающей на барабан

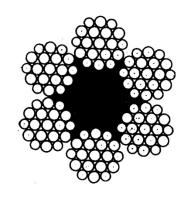
$$S = \frac{G_{\rm rp} + G_{\rm m}}{k \cdot \eta_{\rm m} \cdot \eta^{m}}$$

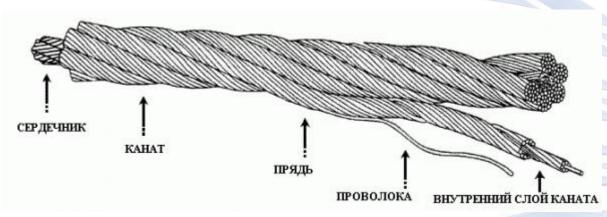
где G_{rp} — вес груза; G_{n} - вес крюковой обоймы подвески и грузозахватных приспособлений; m — количество обводных (отклоняющих) блоков.

Разрывное усилие каната

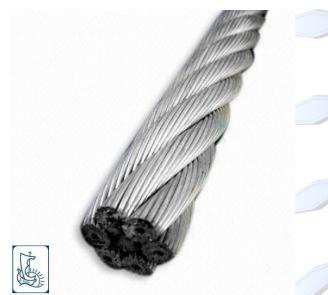
$$S_{p} = S \cdot n$$
,

где **n** – коэффициент запаса прочности, **n** = 4 (M1); 5 (M2, M3); 5,5 (M4); 6 (M5, M6).

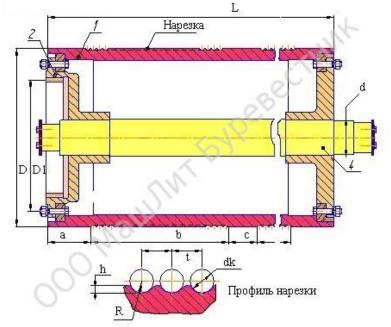

По назначению и разрывному усилию выбирается тип и диаметр каната.

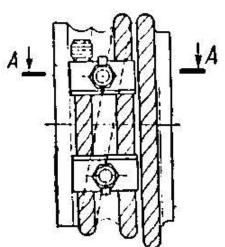

3.1.5. Типы стальных канатов

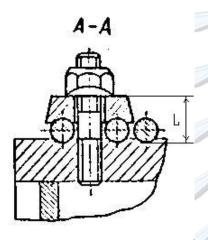
Характеристики	Классификация				
Вид покрытия поверхности проволоки		С оцинкованным покрытием:			
	Без покрытия	ОЖ – для особо жёстких условий работы			
		Ж – для жёстких условий			
		С – для средних агрессивных условий			
		среды			
		П – с покрытием канатов материалами			
	ОС – органический сер	ОС – органический сердечник из натуральных или синтетических			
Материал сердечника	материалов				
	МС – металлический сердечник				
	Одинарные				
Конструкция	Двойные				
	Тройные				
	- крестовая свивка				
Сочетание направления свивки	О –односторонняя свивка				
СВИВКИ	К – комбинированная свивка				
	Крутящиеся, одинаковое направление свивки всех прядей и стренг				
Степень крутимости	МК – малокрутящиеся, противоположное направление свивки				
Степень крутимости	элементов по слоям в канатах многослойных многопрядных и				
	одинарной свивки				


	ТК – точечное касание проволок между слоями, линейное касание		
Тип свивки прядей и канатов одинарной свивки	ЛК-О – при одинаковых диаметрах проволок по слоям прядей		
	ТЛК – комбинированное точечно-линейное касание проволок		
	ЛК-Р – при разных диаметрах проволок по слоям прядей		
	ЛК-3 с заполнением		
	ЛК-РО – с разными и одинаковыми диаметрами проволок по слоям		
	прядей		
	ВП – комбинированное линейно-точечное касание проволок между		
	слоями в результате винтовой прокатки круглых исходных прядей		
	типа ЛК в трёхгранные		
Способ свивки	Н – нераскручивающиеся		
	Р - раскручивающиеся		
Направление свивки	Л - левая		
	- правая		
Механические свойства	Марка В-В		
	Марка 1-1		

3.1.6. Конструкции канатов






Электронный архив УГЛТУ **3.1.6. Грузовые барабаны**

Электронный архив УГЛТУ **Определение размеров барабана**

По правилам Госгортехнадзора минимальный диаметр барабана D_{δ} (мм), измеряемый по впадинам канавок

$$D_6 = d_{\kappa} (e-1)$$

где d_{κ} — диаметр каната, мм;

е — коэффициент, регламентированный нормами Госгортехнадзора.

Группа классификации механизма	M1	M2, M3	M4	M5, M6
Коэффициент е	20	25	30	35

D₆ округляется до нормального линейного размера (кратно 2 или 5) Номинальный диаметр барабана по центрам каната (мм)

$$D_{\rm H} = D_{\rm 6} + d_{\rm K}$$
.

Частота вращения барабана

$$n_{\rm G} = \frac{i \cdot V_{\rm rp} \cdot 10^3}{\pi \cdot D_{\rm H}}$$

Число витков нарезки барабана

$$m = z \left(\frac{H \cdot k \cdot 10^3}{\pi \cdot D_{\mathrm{H}}} + m_{\mathrm{S}} + m_{\mathrm{K}} \right),$$

где m_3 =1,5...2 — число запасных (разгрузочных) витков; m_{κ} =1...3 — число витков, занятых креплением каната.

Длина нарезной части барабана

$$L_{\rm H}=m\cdot t$$
,

где t — шаг нарезки винтовых канавок

$$t = (1,1...1,25)d_{\kappa}$$

Полная длина барабана для сдвоенного полиспаста

$$L_6 = L_{H} + a$$

где *a* – растояние между крайними блоками подвески.

Толщина стенки барабана

$$\delta \geq \frac{S}{t \cdot [\sigma]}$$

где [σ] – допускаемое напряжение для материала стенки барабана, МПа.

Электронный архив УГЛТУ **3.1.7. Выбор электродвигателя**

Статическая мощность двигателя

$$N=rac{(G_{\Gamma\mathrm{p}}+G_{\Pi})V_{\Gamma\mathrm{p}}}{60000\cdot\eta_{\Pi}\eta^{m}\eta_{6}\eta_{\Lambda}}$$
,кВт

где $V_{\rm rp}$ — скорость подъема груза; $\eta_{\it 6}$ — к.п.д. барабана (0,99...0,995); $\eta_{\it n}$ — к.п.д. лебедки (0,97...0,99).

Для грузовых лебедок принимают крановые электродвигатели трехфазного переменного тока с повышенным скольжением с фазным (МТ) или короткозамкнутым (МТК) ротором. С учетом группы классификации механизма принимают $N_{\rm дв} \ge N$. Частота вращения ротора двигателя по каталогу $n_{\rm дв}$, мин⁻¹.

3.1.8. Выбор редуктора

Передаточное число привода

$$u=\frac{n_{\mathrm{AB}}}{n_{\mathrm{6}}}$$
.

Вращающий момент на тихоходном валу

$$M=rac{z\cdot S\cdot D_{
m H}}{2\cdot \eta_{
m G}}$$
 , кНм

Для грузовых лебедок выбирают цилиндрические горизонтальные двухступенчатые крановые редукторы типа Ц2 по ближайшему передаточному числу ($u_p \approx u$) и величине момента на тихоходном валу с учетом группы классификации механизма и частоты вращения быстроходного вала.

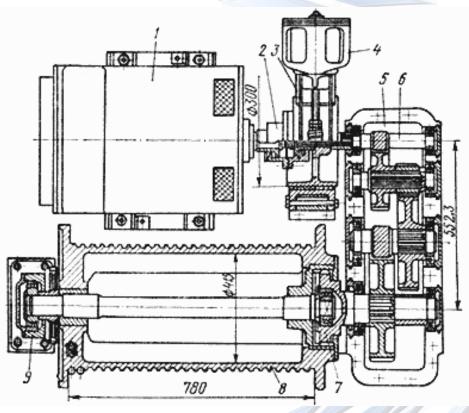
3.1.9. Выбор тормоза

Необходимый тормозной момент для удержания груза

$$M_{\mathrm{T}} \geq k_{\mathrm{T}} \frac{M}{u_{\mathrm{p}}} \eta_{\mathrm{J}}.$$

где $k_{\rm T}$ — коэффициент запаса торможения

Группа классификации механизма	M1, M2, M3	M4	M5	M6
Коэффициент запаса торможения	1,5	1,75	2,0	2,5


Для грузовых лебедок выбирают тормоза колодочные нормально-замкнутые автоматические стопорные с электромагнитным (ТКТ, ТКП) или электрогидравлическим (ТКГ) приводом по величине тормозного момента.

3.1.10. Компоновка механизма подъема груза

3.1.11. Фактические кинематические параметры механизма

Частота вращения барабана

$$n_{\rm f} = \frac{n_{\rm дв}}{u_{\rm p}}$$

Скорость подъема груза

$$V_{\rm rp} = \frac{\pi \cdot D_{\rm H} \cdot n_{\rm G}}{i}$$

3.1.12. Проверка времени пуска электродвигателя и ускорения груза

Номинальный момент на валу двигателя

$$M_{\rm H}=9550\frac{N_{\rm ДB}}{n_{\rm ДB}}$$

Статический момент на валу двигателя

$$M_{\mathrm{AB}} = \frac{M}{u_{\mathrm{p}} \cdot \eta_{\mathrm{A}}}$$

Средний пусковой момент двигателя

$$M_{\scriptscriptstyle \Pi} = \left(\frac{M_{max}}{M_{\scriptscriptstyle
m H}} + \psi_{min}\right) \frac{M_{\scriptscriptstyle
m H}}{2}$$

Время пуска двигателя при подъеме груза

$$t_{\Pi} = \frac{\delta \cdot J \cdot n_{\text{AB}}}{9,55 (M_{\Pi} - M_{\text{AB}})} + \frac{9,55 \cdot Q \cdot V_{\text{rp}}^2}{n(M_{\Pi} - M_{\text{AB}}) \eta_{\Pi} \eta^m \eta_6 \eta_{\Lambda}} \approx 1 \dots 2 c.$$

Ускорение при подъеме груза

$$a = \frac{V_{\rm rp}}{60t_{\rm n}} \le 0.6 \dots 0.8 \,\mathrm{M/c^2}$$

3.1.13. Проверка времени торможения и замедления груза

Время торможения при опускании груза

$$t_{\rm T} = \frac{\delta \cdot J \cdot n_{\rm AB}}{9,55 (M_{\rm T} - M_{\rm AB})} + \frac{9,55 \cdot Q \cdot V_{\rm rp}^2 \eta_{\rm II} \eta^m \eta_6 \eta_{\rm II}}{n_{\rm AB} (M_{\rm T} - M_{\rm AB})} \approx 1 \dots 2 c$$

Замедление при торможении

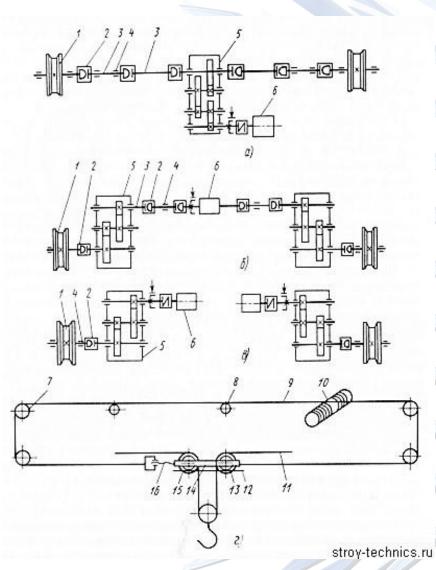
$$a_{\scriptscriptstyle
m T} = rac{V_{\scriptscriptstyle
m FP}}{t_{\scriptscriptstyle
m T}} \le 0.6 \dots 0.8 \ {
m m/c^2}$$

3.2. Механизмы передвижения

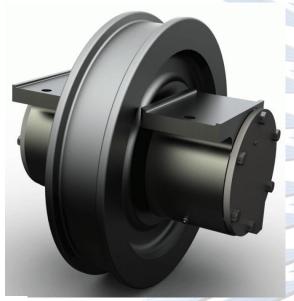
3.2.1. Виды механизмов передвижения

3.2.2. Структура механизма передвижения

Механизм передвижения с приводными колесами



3.2.3. Схемы механизмов передвижения



3.2.4. Ходовые колеса и рельсы

Ходовые колеса кранов и грузовых тележек выпускаются одно- и двух-ребордные. Одно-ребордные применяются в подвесных тележках.

Выбор крановых колес и рельсов

Выбор производится по максимальной статической нагрузке

КРАНОВЫЕ ХОДОВЫЕ КОЛЕСА

Предварительный выбор ходовых колес

Нагрузка, кН	Диаметр колеса, мм	Тип рельса	Ширина плоского рельса, мм
30 50	200250	P24, P38	4050
51 100	260400	P38, P43, P70	5060
101 200	410500	P38, P43, P50, KP70	5070
201 250	510630	P43, P50, KP70, KP80	6070
251 320	640710	P43, P50, KP80, KP100	7080
321 500	720800	KP80, KP100	7080
501800 800; 900; 1000		KP100	100
8011000	900; 1000	KP120; KP140	100140 WyShared

3.2.5. Сопротивление передвижению

Общее сопротивление передвижению

$$F_{\rm nep} = F_{\rm Tp} + F_{\rm y} + F_{\rm B} ,$$

где $F_{
m Tp}$ - сопротивление от сил трения; $F_{
m y}$ - сопротивление преодолению уклона; $F_{
m B}$ - сопротивление от ветровой нагрузки.

$$F_{\rm Tp} = k_{\rm p} \left(G_{\rm rp} + G_{\rm K,T} \right) \frac{\mu_{\rm u} d_{\rm u} + 2f}{D_{\rm K}},$$

где $k_{\rm p}$ — коэффициент, учитывающий трение реборд о головку рельса, $k_{\rm p}$ =1,2...1,5 для опорных кранов; $k_{\rm p}$ = 2...2,5 для крановых тележек; $G_{\rm rp}$ - вес груза; $G_{\rm k,r}$ - вес крана, тележки; $\mu_{\rm q}$ - коэффициент трения в подшипниках цапфы колеса, $\mu_{\rm q}$ =0,01...0,02 ; $d_{\rm q}$ - диаметр цапфы колеса; f — коэффициент трения качения колеса по рельсу, f =10⁻³ $D_{\rm k,m}$ мм; $D_{\rm k}$ - диаметр колеса.

$$F_{y} = (G_{rp} + G_{K,T})i,$$

где i — уклон пути, i =0,001 для мостовых кранов; i =0,003 для козловых кранов; i =0,005 для башенных кранов; i =0,002 для грузовых тележек Для кранов и грузовых тележек, работающих в закрытых помещениях (цехах), $F_{\rm B}$ =0.

Электронный архив УГЛТУ **3.2.6. Выбор двигателя**

Статическая мощность двигателя

$$N=rac{F_{
m \pi ep}V_{
m \pi ep}}{60000\eta}$$
 , кВт

где $V_{\text{пер}}$ - скорость передвижения, м/мин; η — общий к.п.д. механизма передвижения, η =0,7...0,85.

Принимают крановые электродвигатели трехфазного переменного тока с повышенным скольжением с фазным (МТ) или короткозамкнутым (МТК) ротором.

С учетом группы классификации принимают $N_{\rm дв} \ge N$.

Частота вращения ротора электродвигателя по каталогу $n_{\rm дв}$, мин $^{\text{-}1}$. Рекомендуются 4-6 полюсные электродвигатели с синхронной частотой $n_{\rm дв}$ =1000...1500 мин $^{\text{-}1}$.

3.2.7. Выбор редуктора

Частота вращения ходового колеса

$$n_{\scriptscriptstyle
m K}=rac{1000 V_{
m \pi ep}}{\pi \cdot D_{\scriptscriptstyle
m K}}$$
 , мин $^{ ext{-}1}$

Передаточное число редуктора

$$u = \frac{n_{\scriptscriptstyle extsf{BB}}}{n_{\scriptscriptstyle extsf{K}}}$$

По передаточному числу $u_{\rm p}{\approx}u$ и величине передаваемой мощности $N_{\rm p}{\geq}N$ или момента на тихоходном валу с учетом группы режима работы механизма принимают редукторы цилиндрические вертикальные трехступенчатые крановые типа ВК.

Фактическая скорость передвижения

$$V_{\text{пер.}\phi} = \frac{V_{\text{пер}}u}{u_{\text{p}}}$$

3.2.8. Проверка времени пуска электродвигателя и сцепления приводных колес с рельсами

Статический момент на валу двигателя

$$M_{\rm dB} = \frac{F_{\rm nep} D_{\rm K}}{2u_{\rm p} \eta}$$

Средний пусковой момент двигателя

$$M_{\rm cn}=0.85^2\frac{M_{max}+M_{\rm пуск}}{2}$$

Время пуска двигателя

$$t_{\Pi} = \frac{\delta \cdot (J_{\text{AB}} + J_{\text{T}}) \cdot n_{\text{AB}}}{9,55(M_{\text{CH}} - M_{\text{AB}})} + \frac{9,55 \cdot (Q + m) \cdot V_{\text{Пер.}\Phi}^2}{n_{\text{AB}}(M_{\text{CH}} - M_{\text{AB}})\eta},$$

где $\delta = 1,2$ коэффициент влияния неучтенных вращающихся частей механизма передвижения; $J_{\rm дв}$, $J_{\rm т}$ -моменты инерции соответственно ротора электродвигателя и тормозного шкива.

Время пуска электродвигателя механизма передвижения грузовой тележки 1,5...5 с, крана 5...8 с.

Выбранный двигатель проверяется по ускорению при пуске

$$a = \frac{V_{\pi ep.\phi}}{t_{\pi}} \le a_{max}$$

 $a_{max} = 0.2 \text{ mc}^{-2}(Q \le 3.2 \text{ T}); 0.15 \text{ mc}^{-2}(Q = 3.2...12.5 \text{ T}); 0.1 \text{ mc}^{-2}(Q > 12.5 \text{ T})$

Суммарная нагрузка на приводные колеса без веса груза

$$F_{\rm np} = \frac{m \cdot g \cdot z_{\rm np}}{z} \,,$$

где $z, z_{\pi p}$ — соответственно общее количество ходовых колес и количество приводных колес.

Сопротивление передвижению без груза

$$F_{\text{nep}}^{X} = mg(k_{\text{p}} \frac{\mu_{\text{u}} d_{\text{u}} + 2f}{D_{\text{K}}} + i) + F_{\text{B}}^{X}$$

Статический момент на валу двигателя без груза

$$M^{\mathrm{x}}_{\mathrm{dB}} = \frac{F^{\mathrm{x}}_{\mathrm{nep}} D_{\mathrm{K}}}{2u_{\mathrm{p}} \eta}$$

Время пуска двигателя без груза

$$t^{X}_{\Pi} = \frac{\delta \cdot (J_{\text{ДB}} + J_{\text{T}}) \cdot n_{\text{ДB}}}{9,55 (M_{\text{C}\Pi} - M^{X}_{\text{ДB}})} + \frac{9,55 \cdot m \cdot V_{\text{Пер.} \Phi}^{2}}{n_{\text{ДB}} (M_{\text{C}\Pi} - M^{X}_{\text{ДB}}) \eta},$$

Ускорение при пуске

$$a^{x} = \frac{V_{\text{пер.}\varphi}}{t^{x}_{\Pi}}$$

Коэффициент запаса сцепления приводных колес

$$k_{m{arphi}} = rac{F_{m{\Pi}m{p}}m{\phi}}{F^{m{x}}_{m{\Pi}m{e}m{p}} - mg\left(rac{a^{m{x}}}{g} - rac{Z_{m{\Pi}m{p}}}{Z}frac{d_{m{\Pi}}}{D_{m{K}}}
ight)} \geq 1,2$$
 где $m{\phi}$ =0,12...0,15 — коэффициент сцепления

3.2. 9. Определение тормозного момента и выбор тормоза

Максимально допустимое замедление крана (тележки) без груза по условию сцепления колес с рельсами

$$a^{\mathrm{T}}_{max} = \left\{ \left[\frac{z_{\mathrm{\pi p}}}{z} \left(\frac{\varphi}{k_{\varphi}} - f \frac{d_{\mathrm{II}}}{D_{\mathrm{K}}} \right) + \frac{2\mu + f d_{\mathrm{II}}}{D_{\mathrm{K}}} \right] - \frac{F^{\mathrm{X}}_{\mathrm{B}}}{mg} \right\} g \ge a_{max}$$

$$K_{\varphi} = 1, 1 \dots 1, 2$$

Время торможения крана без груза

$$t_{\rm T} = \frac{V_{\rm nep.\phi}}{a_{max}}$$

Сопротивление передвижению при торможении без груза

$$F_{\text{nep}}^{\text{T}} = mg \frac{\mu_{\text{u}} d_{\text{u}} + 2f}{D_{\text{k}}}$$

Момент статических сопротивлений на тормозном валу

$$M_c^{\mathrm{T}} = \frac{F^{\mathrm{T}}_{\mathrm{nep}} D_{\mathrm{K}} \eta}{2u_{\mathrm{p}}}$$

Момент сил инерции при торможении крана без груза

$$M_{_{\mathrm{UH}}}{}^{\mathrm{T}} = \frac{\delta J n_{_{\mathrm{JB}}}}{9,55t_{_{\mathrm{T}}}} + \frac{9,55m V_{_{\mathrm{пер}\,\Phi}}{}^{2}\eta}{n_{_{\mathrm{JB}}}t_{_{\mathrm{T}}}}$$

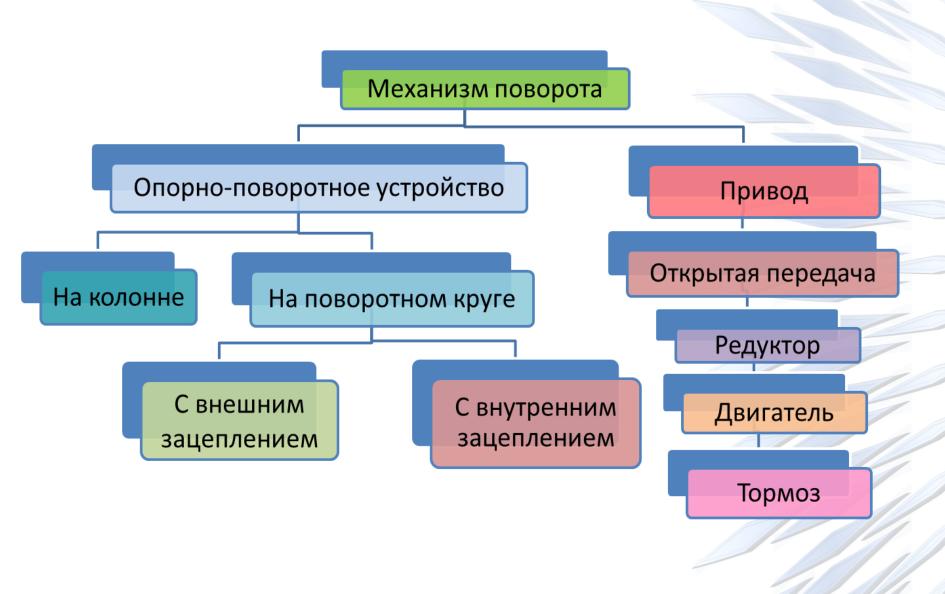
Расчетный тормозной момент

$$M_{\rm p}^{\rm T} = M_{\rm иH}^{\rm T} - M_{\rm c}^{\rm T}$$

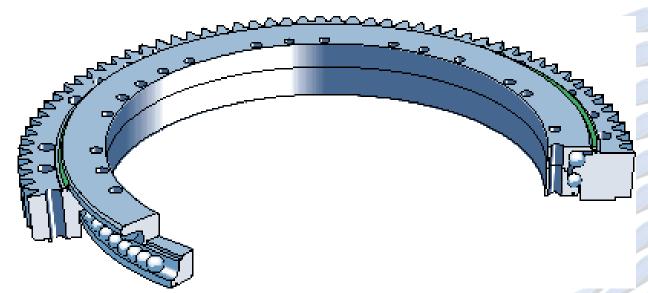
Для механизмов передвижения рекомендуются тормоза с электрогидравлическими приводами.

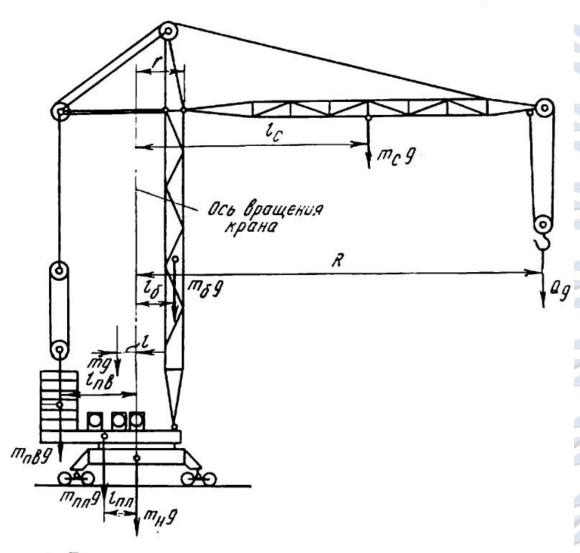
Фактическая длина пути торможения

$$S_{\Phi} = 0.5 V_{\text{пер.}\Phi} t_{\text{T}} \ge \frac{V_{\text{пер.}\Phi}^2}{k},$$


где k = 0.9 (на открытом воздухе); 1,5 (в помещении).

3.3. Механизмы поворота крана


3.3.1. Структура и виды и механизмов поворота крана


ОПУ на поворотном круге

3.3.2. Расчетные нагрузки механизма поворота

Расчетная схема крана

Масса крана и его частей

$$m \approx (0.31 \dots 0.335) Q \cdot R \cdot \sqrt[3]{H/Q}$$

где Q — грузоподъемность крана, т; R — вылет стрелы, м; H — высота подъема груза, м.

Поворотная платформа с механизмами подъема, поворота и изменения вылета: $m_{\Pi \Pi} \approx 0.1 m$.

Противовес: $m_{\text{пв}} \approx 0.34 m$.

Башня: $m_6 \approx 0,13m$.

Стрела: $m_c \approx 0.34m$.

Масса поворотной части крана

$$m_{\text{пов}} = m_{\text{пл}} + m_{\text{пв}} + m_{\text{б}} + m_{\text{c}}$$

Максимальная статическая вертикальная нагрузка на опорно-поворотное устройство

$$F_{\rm B}=(m_{\rm noB}+Q)g,$$

где Q – суммарная масса груза и грузозахватного устройства.

По величине максимальной статической вертикальной нагрузке из каталога выбирается нормализованное опорно-поворотное устройство.

Максимальный статический опрокидывающий момент

$$M_o = (Q \cdot R - m_{\text{\tiny ПОВ}} l_{\text{\tiny ПОВ}}) g$$
 ,

где $l_{
m nos}$ - расстояние от оси вращения крана до центра тяжести его поворотной части

$$l_{\text{пов}} = \frac{m_{\text{пл}} l_{\text{пл}} + m_{\text{пв}} l_{\text{пв}} - m_{\text{б}} l_{\text{б}} - m_{\text{c}} l_{\text{c}}}{m_{\text{пов}}}$$

где $l_{\rm пл}$, $l_{\rm пв}$, $l_{\rm f}$, $l_{\rm c}$ —расстояния от оси вращения крана до центра тяжести соответственно платформы, противовеса, башни и стрелы.

3.3.3. Статические сопротивления повороту крана

Момент сил трения в шариковых и роликовых опорно-поворотных устройствах относительно оси вращения

$$M_{\rm Tp} = \frac{0.025M_o + 0.005F_{\rm B}D_{\rm cp}}{\cos \gamma}$$

где $D_{\rm cp}$ - диаметр ОПУ по центрам тел качения (шариков/роликов); γ —угол наклона опорной реакции к вертикали.

Наибольший момент сопротивления вращению от веса поворотной части крана и груза при нахождении на уклоне

$$M_{\mathrm{y}} = i(Q \cdot R - m_{\mathrm{noB}} l_{\mathrm{noB}})g$$
,

где Q — масса груза при номинальной грузоподъемности; R — вылет стрелы; i — уклон пути крана, i =0,005 для башенных кранов .

Момент статического сопротивления от ветровой нагрузки относительно оси вращения крана

$$M_{\rm B} = F_{\rm BK} r_{\rm K} + F_{\rm B\Gamma} r_{\Gamma}$$

где $F_{\rm BK}$, $F_{\rm B\Gamma}$ — ветровые нагрузки соответственно на кран и на груз; $r_{\rm K}$, $r_{\rm \Gamma}$ - расстояния от оси вращения до центра тяжести площади наветренной поверхности соответственно крана и груза.

Статический момент сопротивления повороту крана

$$M_{\rm C} = M_{\rm Tp} + M_{\rm y} + M_{\rm B}$$

3.3.4. выбор электродвигателя

Статическая мощность двигателя привода механизма поворота крана

$$N_{\rm AB}=\frac{M_{\rm c}n_{\rm HOB}}{9550\eta}\,,$$

где $n_{\text{пов}}$ - частота вращения поворотной части крана; η – к.п.д. привода механизма поворота крана, для зубчатых цилиндрических передач и опор на подшипниках качения η =0,75...0,85.

Для механизмов поворота кранов рекомендуются электродвигатели крановые серий МТ и МТК с числом полюсов 2...4.

3.3.5. Выбор редуктора

Необходимое общее передаточное число привода механизма поворота

$$u = \frac{n_{\text{\tiny ДB}}}{n_{\text{\tiny \PiOB}}}$$

Для механизмов поворота кранов рекомендуется привод из червячного редуктора ($u_p \approx 40...80$) с предохранительным фрикционом и зубчатой пары «шестерня — зубчатый венец» с передаточным числом u_{3n} .

$$u_{\rm 3\Pi} = \frac{u}{u_{\rm p}}.$$

Момент на тихоходном валу редуктора

$$M = \frac{M_{\rm c}}{u_{\rm 3\Pi}\eta_{\rm 3\Pi}}$$

Время пуска двигателя

$$t_{\Pi} = \frac{\delta J n_{\text{дB}}}{9,55(M_{\text{CH}} - M_{\text{дB}})} + \frac{J_{\text{ПОВ}} n_{\text{дB}}}{9,55u^2(M_{\text{CH}} - M_{\text{дB}})} \ge t_{\text{П.р.}},$$

где δ — коэффициент, учитывающий прочие вращающиеся массы привода механизма поворота; J — момент инерции ротора двигателя и тормозного шкива; $J_{\text{пов}}$ — момент инерции вращающихся масс платформы, противовеса (с противовесной консолью), башни, стрелы и груза относительно оси вращения платформы, кг-м²; $M_{\text{сп}}$ — средний пусковой момент двигателя; $M_{\text{дв}}$ — статический момент сопротивления повороту крана, приведенный к валу двигателя; u — передаточное число привода механизма поворота крана; $t_{\text{п.р.}}$ - время пуска рекомендуемое.

$$J_{\text{пов}} = J_{\text{пл}} + J_{\text{пв}} + J_{\text{б}} + J_{\text{c}} + J_{\Gamma}$$
,

где $J_{\Pi \Pi}$, $J_{\Pi B}$, J_{G} , J_{C} , J_{Γ} - моменты инерции относительно оси поворота крана, соответственно, поворотной платформы, противовеса, башни, стрелы и груза:

$$\begin{split} J_{\Pi\Pi} \approx m_{\Pi\Pi} l_{\Pi\Pi}^2; \; J_{\Pi B} \approx m_{\Pi B} l_{\Pi B}^2; \; J_{6} \approx m_{6} l_{6}^2; \; J_{c} \approx m_{c} \frac{R^2 + R \cdot r + r^2}{3}; \; J_{\Gamma} \approx Q \cdot R^2. \\ M_{\text{AB}} = \frac{M_{\text{c}}}{u \cdot \eta} \; . \end{split}$$

Электронный архив УГЛТУ Момент сопротивления пуску двигателя

$$M_{\text{пуск}} = \frac{M_{\text{с}}}{u \cdot \eta} + \frac{\delta J n_{\text{дв}}}{9,55t_{\text{п}}} + \frac{J_{\text{пов}} n_{\text{дв}}}{9,55t_{\text{п}} u^2 \eta'}$$

Необходимая мощность двигателя при пуске

$$N_{\text{пуск}} = \frac{M_{\text{пуск}} n_{\text{дв}}}{9.55 \cdot \eta} \le (2 ... 3) N_{\text{дв.кат.}}$$

Момент сопротивления на валу тормоза при торможении механизма поворота крана

$$M_{
m p}^{
m T} = M_{
m иH}^{
m T} - M_{
m c}^{
m T},$$
 $M_{
m иH}^{
m T} = rac{\delta J n_{
m ДB}}{9,55 t_{
m T}} + rac{J_{
m \Pi OB} n_{
m ДB} \eta}{9,55 t_{
m T} u^2},$
 $M_{
m c} = rac{(M_{
m Tp} - M_{
m y} - M_{
m B}) \eta}{u},$
 $t_{
m T} = rac{[eta]}{3 n_{
m TOB}}$

По величине $M_{\scriptscriptstyle {
m T}} \geq M_{\scriptscriptstyle {
m D}}^{\scriptscriptstyle {
m T}}$ выбирается тормоз.

Электронный архив УГЛТУ Рекомендуемые параметры для механизмов поворота

Рекомендуемое время пуска и торможения механизма поворота

Максимальный вылет стрелы, м	Время, с	
	пуска, не менее	торможения не более
5	1	4
10	2,5	8
15	4	10
20	8	15
25	8	25
20 25 30	10	30

Наибольший допускаемый угол поворота поворотной части крана при пуске (торможении)

Режим работы	Угол поворота крана [β], град	
Легкий	15	•
Средний	20	
Тяжелый	30	

- 4. Эксплуатация подъемных средств опасных промышленных объектов (ПС ОПО): извлечения из ФНП-533 Правила безопасности опасных производственных объектов, на которых используются подъемные сооружения"
- Установка ПС и производство работ
- Пуск ПС в работу и постановка на учет
- Организация безопасной эксплуатации ПС в составе ОПО
- Требования к проектам организации строительства, ППР и ТК с применением ПС
- Техническое освидетельствование ПС
- Требования к процессу эксплуатации, браковке и замене стальных канатов и цепей
- Требования к процессу эксплуатации, проверке состояния и дефектации рельсового пути
- Требования к процессу эксплуатации, проверке состояния и дефектации грузозахватных приспособлений и тары
- Требования к процессу подъема и транспортировки людей
- Система сигнализации при выполнении работ
- Нарушения требований промышленной безопасности, при которых эксплуатация ПС должна быть запрещена
- Действия в аварийных ситуациях работников ОПО, эксплуатирующих ПС
- Утилизация (ликвидация) ПС

4.1. Объекты контроля при техническом освидетельствовании

- а) грузоподъемные краны всех типов;
- б) мостовые краны-штабелеры;
- в) краны-трубоукладчики;
- г) краны-манипуляторы;
- д) строительные подъемники;
- е) подъемники (вышки), предназначенные для перемещения людей, людей и груза (подъемники с рабочими платформами);
- ж) грузовые электрические тележки, передвигающиеся по надземным рельсовым путям совместно с кабиной управления;
 - з) электрические тали;
 - и) краны-экскаваторы, предназначенные для работы с крюком;
- к) сменные грузозахватные органы и съемные грузозахватные приспособления (крюки, грейферы, магниты, спредеры, траверсы, захваты, стропы), используемые совместно с ПС для подъема и перемещения грузов;
- л) тара для транспортировки грузов, за исключением специальной тары, применяемой в металлургическом производстве (ковшей, мульдов), а также специальной тары, используемой в морских и речных портах;
- м) специальные съемные кабины и люльки, навешиваемые на грузозахватные органы кранов и используемые для подъема и перемещения людей;
- н) рельсовые пути (для опорных и подвесных ПС, передвигающихся по рельсам).

Электронный архив УГЛТУ 4.2. периодичность технического освидетельствования

ПС в течение срока службы должны подвергаться периодическому техническому освидетельствованию:

- а) частичному не реже одного раза в 12 месяцев;
- б) полному не реже одного раза в 3 года, за исключением редко используемых ПС (ПС для обслуживания машинных залов, электрических и насосных станций, компрессорных установок, а также других ПС, используемых только при ремонте оборудования, для которых полное техническое освидетельствование проводят 1 раз в 5 лет).

Внеочередное полное техническое освидетельствование ПС должно проводиться после:

- а) монтажа, вызванного установкой ПС на новом месте (кроме подъемников, вышек, стреловых и быстромонтируемых башенных кранов);
- б) реконструкции ПС;
- в) ремонта расчетных элементов металлоконструкций ПС с заменой элементов или с применением сварки;
- г) установки сменного стрелового оборудования или замены стрелы;
- д) капитального ремонта или замены грузовой или стреловой лебедки;
- е) замены грузозахватного органа (проводятся только статические испытания);
- ж) замены несущих или вантовых канатов кранов кабельного типа.

4.3. Объем и содержание технического освидетельствования

При полном техническом освидетельствовании ПС должны подвергаться:

- а) осмотру;
- б) статическим испытаниям;
- в) динамическим испытаниям;
- д) испытаниям на устойчивость для ПС, имеющих в паспорте характеристики устойчивости (с учетом указаний пунктов 190 191 ФНП-533), за исключением ПС, не требующих демонтажа на месте их эксплуатации.

При частичном техническом освидетельствовании статические и динамические испытания ПС не проводятся.

При техническом освидетельствовании ПС должны быть осмотрены и проверены в работе его механизмы, тормоза, гидро- и электрооборудование, указатели, ограничители и регистраторы.

Кроме того, при техническом освидетельствовании крана должны быть проверены:

- а) состояние металлоконструкций крана и его сварных (клепаных, болтовых) соединений (отсутствие трещин, деформаций, ослабления клепаных и болтовых соединений), а также состояние кабины, лестниц, площадок и ограждений;
- б) состояние крюка, блоков.

Электронный архив УГЛТУ **Испытания ПС**

Статические испытания проводят с целью проверки конструктивной пригодности ПС и его сборочных единиц. До проведения испытаний тормоза всех механизмов ПС должны быть отрегулированы согласно руководству по эксплуатации на тормозной момент, указанный в паспорте ПС, а ограничитель грузоподъемности отключен.

Статические испытания следует проводить для каждого грузоподъемного механизма и, если это предусмотрено в паспорте ПС, при совместной работе грузоподъемных механизмов в положениях и вариантах исполнения, выбранных таким образом, чтобы усилия в канатах, изгибающие моменты и (или) осевые усилия в основных элементах ПС были наибольшими.

Статические испытания должны проводиться со следующими нагрузками (по отношению к номинальной паспортной грузоподъемности): 125 процентов - для ПС всех типов (кроме подъемников);

Динамические испытания ПС проводятся грузом, масса которого на 10 процентов превышает его паспортную грузоподъемность, и имеют целью проверку действия его механизмов и тормозов. При динамических испытаниях ПС производятся многократные (не менее трех раз) подъем и опускание груза, а также проверка действия всех других механизмов при совмещении рабочих движений, предусмотренных руководством (инструкцией) по эксплуатации ПС.

Результаты технического освидетельствования ПС записываются в его паспорт

4.4. Нарушения требований промышленной безопасности, при которых эксплуатация ПС должна быть запрещена

Эксплуатирующая организация не должна допускать ПС в работу, если при проверке установлено, что:

- а) обслуживание ПС ведется неаттестованным персоналом;
- б) не назначен хотя бы один из специалистов: ответственный за осуществление производственного контроля при эксплуатации ПС; ответственный за содержание ПС в работоспособном состоянии; ответственный за безопасное производство работ с применением ПС;
- в) не проведено соответствующее техническое освидетельствование ПС. Не проведена экспертиза промышленной безопасности ПС в установленных настоящими ФНП случаях;
- г) не выполнены выданные федеральными органами исполнительной власти в области промышленной безопасности предписания;
- д) на ПС выявлены технические неисправности:
- трещины или остаточные деформации металлоконструкций (последние выше допустимых пределов);
- ослабление креплений в соединениях металлоконструкций;
- неработоспособность заземления, гидро-, пневмо- или электрооборудования, указателей, ограничителей (ограничители рабочих параметров и ограничители рабочих движений), регистраторов, средств автоматической остановки, блокировок и защит (приведены в паспорте или руководстве по эксплуатации ПС);
- недопустимый износ крюков, ходовых колес, канатов, цепей, элементов механизмов и тормозов;
- системы управления;
- противоугонных захватов, рельсового пути, тупиковых упоров;

- е) отсутствуют соответствующие массе и виду перемещаемых грузов съемные грузозахватные приспособления и тара, или они неработоспособны;
- ж) отсутствуют в установленных настоящими ФНП случаях ППР, ТК, наряды-допуски;
- з) не выполнены мероприятия по безопасному ведению работ и требования, изложенные в ППР, ТК, нарядах-допусках;
- и) отсутствуют: паспорт ПС и/или руководство (инструкция) по эксплуатации ПС; сведения о постановке ПС на учет в федеральных органах исполнительной власти в области промышленной безопасности, осуществляющих ведение реестра ОПО (для ПС, подлежащих учету);
- к) работы с применением ПС ведутся с нарушениями настоящих ФНП, ППР, ТК и инструкций;
- л) ПС не соответствует технологическому процессу, в котором задействовано;
- м) ПС не соответствует параметрам окружающей среды и региона, где применяется (температурный диапазон окружающей среды, ветровой регион, сейсмичность района);
- н) здания, сооружения, конструкции, воспринимающие нагрузки от ПС, имеют недопустимые дефекты (трещины, деформации, разрушения), превышающие допустимые величины, установленные в эксплуатационных документах на здания, сооружения, конструкции.

4.5. Действия в аварийных ситуациях работников ОПО, эксплуатирующих ПС

В организации, эксплуатирующей ОПО с ПС, должны быть разработаны и доведены под роспись до работников инструкции, определяющие их действия в аварийных ситуациях.

В инструкциях, разрабатываемых согласно требованиям настоящих ФНП, наряду с требованиями, определяемыми спецификой ОПО, должны быть указаны следующие сведения для работников, занятых эксплуатацией ПС:

- а) оперативные действия по предотвращению и локализации аварий;
- б) способы и методы ликвидации аварий;
- в) схемы эвакуации в случае возникновения взрыва, пожара, выброса токсичных веществ в помещении или на площадке, обслуживаемой ПС, если аварийная ситуация не может быть локализована или ликвидирована;
- г) порядок использования системы пожаротушения в случае локальных возгораний оборудования ОПО;
- д) порядок приведения ПС в безопасное положение в нерабочем состоянии, схема и порядок эвакуации крановщика (оператора), покидающего кабину управления ПС;
 - е) места, отведенные в ОПО, для нахождения ПС в нерабочем состоянии;
 - ж) места отключения вводов электропитания ПС;
 - з) места расположения медицинских аптечек первой помощи;
- и) методы оказания первой помощи работникам, попавшим под электрическое напряжение, получившим ожоги, отравившимся продуктами горения;
 - к) порядок оповещения работников ОПО о возникновении аварий и инцидентов.

Ответственность за наличие указанных инструкций лежит на руководстве ОПО, эксплуатирующем ПС, а их исполнение в аварийных ситуациях - на каждом работнике ОПО.