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Abstract Keywords:

In recent years, as the ecological role of forests has grown to a global Genus Betula sp.;

level, the need to analyze their biological productivity in terms of Equations additivity;
biogeography has increased. Such studies are carried out mainly on a Biosphere role of forests;
regional scale at the levels of both single-trees and forest stands. Biomass of trees and forests;
Thanks to formed by the authors the database on the biomass of Allometric models.

1076 sample trees of the genus Betula sp. growing on the territory of
Eurasia, the trans-Eurasian model of tree biomass is proposed for the
first time. The model takes into account regional differences in the
biomass structure of equal-sized trees, harmonized on the principle of
additivity.

1 Introduction

The world is experiencing unprecedented forest ecology-scale information splash in estimates
of biological productivity and carbon-depositing capacity of forests in the assumption of anthropogenic
climate change and finding capacity of his stabilization. In recent years, the scientific branch
associated with the estimating the biological productivity of trees and stands is the most intensely
developed in two aspects: (1) in compiling the world's actual data bases on biological productivity at
the levels of forest stands and sample trees with their development through global and
transcontinental patterns [7, 20, 23, 26, 37] and (2) in the development of methodological bases of
regression modelling with the aim to improve the accuracy of our estimates and the correctness of the
empirical models of biological productivity of forests and their constituent trees, namely, in directions of
developing harmonized and mixed-effects models.

The development of generic allometric biomass models [5, 6, 22, 25, 27, 29, 32, 38, 42] is
replaced by the phasing out of them and moving on to the concept of their harmonizing.
Harmonization implies at least two directions: (1) designing of compatible regional models based on
dummy variables [13, 14, 15, 16, 18, 19, 31, 33, 36, 37, 39, 40, 41] and (2) designing of compatible
models based on the principle of additivity of biomass component composition [2, 3, 4, 9, 10, 11, 12,
21, 28].

In this article, the first attempt to develop a harmonized allometric transcontinental model of tree
biomass, which combined both mentioned by [17] approaches, namely, ensuring the principle of
additivity of component composition and localization (unbundling) of additive biomass model according
to regions of Eurasia by introducing dummy variables. In other words, an attempt was made to solve
the problem of joining additivity and universality in a single model on the example of birch (genus
Betula sp.). The model will serve as a basis for designing the regional trans-Eurasian standards with a
view to assessing the biomass of birch trees and stands according to regions of Eurasia.
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2 Material and methods

In recent years across all the territory of Eurasia the database on single-tree biomass in a
number of 7300 definitions on sample plots was first compiled and published [34, 35]. More than 70 %
of the materials fall on the territory of Russia and countries of the former USSR. The genus Betula sp.
involves about 120 species from which data on tree biomass are available for 7 of the total species
quantity.

Of the mentioned database the materials in a number of 1076 sample trees of four vicarage
species of the genus Betula sp. (B. alba L., B. platyphylla Suk., B. costata Trautv. and B. dahurica
Pall.) are taken that are distributed in 11 eco-regions and marked respectively by 11 dummy variables
from Xgto Xyo (Table 1). The distribution of sample plots, on which sample trees are taken in different
ecoregions of Eurasia, is shown in Fig. 1.

Table 1: The scheme of regional coding actual biomass of 1076 birch sample trees by dummy

variables.
Region® | Species of Durimy veriables Range of DBH, | ras height, | measure.
: X1 | Xo [ X3 | Xy | Xs | Xo | X7 | Xs | Xo | X10 cm m ments
WME B. alba L. o|jofo|J]ofOoO|J]O|jO|O]O]|O 05+21.0 2.1+18.8 12
ER B. alba L. i1f{0j]0|J]O0O|J]O]J]OfjO]JO|O]|O 0.9+41.8 22+27.1 160
Ural B. alba L. o|j1fo0o)jofo|JojofO0O]O]|oO 1.0+31.0 2.7+26.4 193
WSst B. alba L. o|jofi1)jJ]o0f0|JO]jO|O]O]|O 0.5+48.0 1.7+25.0 571
MS B. alba L. o|jofo|J1f(f0o|JO|jO|O]O]|O 0.2+44.7 1.5+ 26.6 64
FEn B.platyphyllas. [o|o|o|o|2|ofofo|lo|o]| 67<271 6.6 +14.2
FEs B.platyphylas. o |of|ofofof21]o]ofo|lo] 91:305 | 125-260
FEs B. costata Tr. olofofofofOfj12|0|0O0]|O 8.6 +30.2 15.3+20.9
FEs B.dahurica Pall. olfofofofofofjo|1|0]|O 9.8 +30.8 13.7 +20.4
Ch B.platyphyllas. [0 |o|o|o|o|o|o]o|1|0]| o02+280 1.5+20.0 17
Jap B.platyphyllas. |0 |o|o|o|o|o|o|o|0|1| 43:164 7.2+19.8 33

* Region designations: WME — West and Middle Europe; ER — European part of Russia, Central territory; Ural — Middle and
Southern Ural; WSst — Western Siberia, steppe; MS — Middle Siberia, Southern taiga; FEn — Far Vostok, Northern taiga; FEs —
Far East, Primorie; Ch — Northeast China and Mongolia; Jap — Japanese islands.

Fig. 1: The dlstrlbutlon of sample plots on WhICh blomass (kg) of 1076 sample trees of Betula sp. is
measured in different ecoregions of Eurasia.

Analysis of biomass of tree biomass is made on the basis of allometric additive models.
According to the structure of disaggregating three-step additive model system [10, 30], total biomass,
estimated by the total equation, exploded into components according to the scheme presented in
Fig. 2. The coefficients of the regression models for all three steps are evaluated simultaneously,
which ensures additivity of the all components: total, intermediate and initial ones [10].
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Fig. 2: The pattern of disaggregating three-step proportional weighting additive model.
Designation: P, Py, Py, P., Ps, Py, Py, Py and Py are tree biomass respectively: total, underground
(roots), aboveground, crown (needles and branches), stems above bark (wood and bark), needles,
branches, stem wood and stem bark correspondingly, kg.

3 Results and discussion

Initial allometric models are calculated
InP; = & + bi(InD) + ¢;i(InH) + di(InD)(InH) + Zg; X, Q)

where P; — biomass of i-th component, kg; D — diameter on breast height, cm; H — tree height, m;
i — index of biomass component: total (t), aboveground (a), roots (r), tree crown (C), stem above bark
(9), foliage (f), branches (b), stem wood (w) and stem bark (bK); j - index (code) of dummy variable,
from 0 to 10 (see Table 1). Xg;X; — block of dummy variables for i—th biomass component of j-th
ecoregion. Model (1) after antilogarithmic procedure has the form

P = & DPiH DY) gZaix (2)

Since calculation of regression coefficients in the model (1) is made in the transformed data, to
eliminate biases caused by logarithmic modification of variables, in the equation the amendment
proposed by [1] is introduced. Using the programme of common regression analysis the calculation of
coefficients of equations (1) is performed and their characteristic is obtained, that is given in the Table
2 after correcting the logarithmic transformation by [1] and bringing it to the form (2). All the regression
coefficients for numerical variables of the equations (2) are significant at the level of probability of 0.95
or higher, and the equations are adequate to empirical data.

By substituting the regression coefficients of initial equations from Table 2 into the structure of
the additive model, presented in Table 3, when using three-step scheme of proportional weighting, we
got transcontinental additive model of component composition of birch tree biomass of double
harmonization, the final appearance of which is given in Table 4. The model is valid in the range of
actual data of height and diameter of the sample trees shown in the Table 1.

By tabulating the model obtained (Table 4) according to the given values of D and H as well as
by the values of the dummy variables, localizing the general model for eco-regions, you can calculate
regional transcontinental standards for Eurasia, intended for estimating tree and forest additive
biomass components. In particular, for the Ural region the similar regional standard is shown in the
Table. 5.
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Table 3: The structure of three-step add
and

Vol. 14, Issue 2/2018, 105-115

itive models obtained by proportional weighting. Symbols here
further see in equation (1).
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Table 4: Three-step additive model of component biomass composition for birch trees, obtained by

proportional weighing.
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Table 5: Table for estimating the additive biomass of white birch trees on height and stem diameter in
the Ural region.

H, m | Biomass components DBH, cm
6 10 14 18 22 26 30
Total biomass 8.12 24.35 50.20 - - - -
Roots 1.76 8.29 22.00 - - - -
Aboveground 6.36 16.06 28.20 - - - -
Tree crown 1.06 3.23 6.37 - - - -
6 Foliage 0.33 0.88 1.59 - - - -
Branches 0.74 2.35 4.78 - - - -
Stem total 5.30 12.83 21.84 - - - -
Stem wood 4.44 10.56 17.72 - - - -
Stem bark 0.86 2.28 4.11 - - - -
. DBH. cm
H. m | Biomass components
6 10 14 18 22 26 30
Total biomass 8.89 28.15 60.13 106.00 - - -
Roots 0.86 4.53 13.23 28.98 - - -
Aboveground 8.03 23.62 46.90 77.03 - - -
Tree crown 0.88 3.29 7.63 14.05 - - -
10 Foliage 0.25 0.80 1.67 2.81 - - -
Branches 0.62 2.48 5.97 11.24 - - -
Stem total 7.16 20.33 39.27 62.98 - - -
Stem wood 6.24 17.40 33.17 52.63 - - -
Stem bark 0.92 2.93 6.10 10.34 - - -
Total biomass 9.44 30.97 67.73 121.50 193.76 - -
Roots 0.51 2.82 8.55 19.40 2.97 - -
Aboveground 8.93 28.15 59.18 102.10 156.69 - -
Tree crown 0.72 3.04 7.67 15.12 25.77 - -
14 Foliage 0.20 0.69 1.53 2.73 4.29 - -
Branches 0.53 2.35 6.14 12.40 21.49 - -
Stem total 8.21 25.12 51.51 86.98 130.92 - -
Stem wood 7.30 21.97 44.49 74.36 110.96 - -
Stem bark 0.90 3.14 7.02 12.62 19.96 - -
Total biomass - 33.26 74.02 134.54 216.81 322.54 -
Roots - 1.93 5.96 13.78 2.47 46.39 -
Aboveground - 31.33 68.06 120.76 190.03 276.14 -
Tree crown - 2.78 7.40 15.23 26.94 43.07 -
18 Foliage - 0.60 1.38 2.54 4.10 6.08 -
Branches - 2.18 6.02 12.70 22.83 36.98 -
Stem total - 28.55 60.66 105.53 163.09 233.08 -
Stem wood - 25.34 53.18 91.59 140.36 199.11 -
Stem bark - 3.21 7.48 13.94 22.73 33.97 -
Total biomass - - 79.46 145.95 237.16 355.28 502.26
Roots - - 4.41 10.30 1.94 35.35 56.95
Aboveground - - 75.05 135.65 216.95 319.93 445.31
Tree crown - - 7.07 15.01 27.24 44.55 67.66
22 Foliage - - 1.24 2.35 3.87 5.83 8.25
Branches - - 5.83 12.67 23.37 38.72 59.40
Stem total - - 67.98 120.64 189.71 275.38 377.65
Stem wood - - 60.25 105.88 165.12 237.96 324.22
Stem bark - - 7.74 14.76 24.59 37.42 53.43
Total biomass - - - 156.18 255.56 385.06 547.07
Roots - - - 8.01 1.52 27.85 45.13
Aboveground - - - 148.17 239.73 357.21 501.94
Tree crown - - - 14.68 27.16 45.18 69.67
26 Foliage - - - 2.17 3.63 5.54 7.94
Branches - - - 12.50 23.53 39.64 61.73
Stem total - - - 133.49 212.57 312.03 432.27
Stem wood - - - 118.17 186.66 272.05 374.48
Stem bark - - - 15.32 25.91 39.98 57.79
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Because sometimes it is impossible to measure the height of trees in sample plots, for such
cases when calculating the biomass per ha the auxiliary equation intended for using the proposed
model (2) is calculated, adjusted to logarithmic transformation;

H=1 9871DO.8766eO.2804D e—0.0lGED eO.023EX1 e—0.1800(2 e—0.0274(3 e0.0114(4 e—0.4268(5 eO.1510(6 e0.0188(7 X
X e—0.0439(8 e—O.l642(9 e—0.0024(10; adeZ: 0.854. (3)

Variable (1/D) introduced in the structure of the model (3) for correction of allometry, biased in
small trees due to the shift of diameter D in the upper part of tree crown, and variable (D) - for
correction of allometry, suspended at large, old-aged trees. All the regression coefficients for
numerical variables of the equation (3) are significant at the level of probability Py q99, and the equation
is adequate to empirical data.

Tabulating of built additive models (2) in Excel format is fulfilled. Because the volume of tables
obtained can exceed the format of journal article, we are limit ourselves to some regional
characteristics analysis of the structure of biomass of trees of the same size when using the fragment
of summary table for birch (Table 6). Their analysis shows that the maximum values of total biomass
of equal size trees occur in Western and Central Europe (97 kg) and in the eastern part of the birch
areal - in Primorye, Northeast China, Japan (80 - 98 kg), that are under the influence of a humid
climate of the Atlantic and Pacific oceans, accordingly. Lowest indices (62 - 70 kg) fall on Ural-
Siberian region and the northern territory of the Far East (Magadan Oblast), characterized by a
pronounced continental climate.

It was found [8, 24] that the correction of internal inconsistency of biomass equations by
ensuring their additivity does not necessarily means improvements in the accuracy of biomass
estimating, it is necessary to ascertain, whether adequate the additive model obtained and how its
adequacy characteristics are related to the same indices of independent (trivial) equations?

To this purpose, the estimates of biomass obtained from independent and additive equations
are compared with actual biomass values by calculating the coefficient of determination R? calculated
by the formula

5 N ov_T?
R& p— 1 =3="10 L —
AR ALK )

where Y; - actual biomass values; ¥; - predicted biomass values; Y - the mean actual value of all (N)
trees.

To properly compare the adequacy of independent and additive equations, we reproduce the
original data in a comparable condition, i.e. independent equations for all components of biomass are
calculated according to the same data that the additive ones and the equations for the total biomass.
Description of such "methodized" equations is given in the Table 7. The results of the comparison
(Table 8) indicate that while additive equations internally consistent, but compared to the independent
equations they have better characteristics of adequacy not for all component biomass. As already has
been noted, when implementing the additivity principle, the aim of improving adequacy of the models
obtained in comparison to the traditional models was not provided.

The ratio of actual values and derived ones by tabulating independent and additive tree
biomass models (Fig. 3) shows the degree of correlativeness of the actual and calculated values and,
in many cases, the absence of visible differences in the structure of residual variances obtained on
two mentioned models. More or less the value of R? of one or the other model is determined by the
random position of actual values of biomass of largest trees in confidence belt and uneven dispersion,
namely accidental because of their small number and the greatest contribution to the residual variance
(see Fig. 3).
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Table 8: Comparison of the adequacy indices of the independent and additive equations for birch tree

biomass.
Adequacy Biomass components*
ks Pt | Pa | Pr | Ps | Pw [ Pk | Pc | Pb | P
Independent equations
R | o979 | o987 | o821 | o971 | o979 | o960 | 0962 | 096 | 0926
Additive equations
R | o979 | o986 | 0819 | 0964 | 0953 | 0931 | 0967 | 0966 | 0927

* Designations see Fig. 2. Bold components, for which RZ values of the additive models higher than independent ones.

4 Conclusion

Thus, thanks to formed by the authors the database on the biomass of 1076 sample trees of the
genus Betula sp. growing on the territory of Eurasia, the trans-Eurasian model of tree biomass is
proposed for the first time. The model takes into account regional differences in the biomass structure
of equal-sized trees, harmonized on the principle of additivity. The proposed model and corresponding
tables for estimating tree biomass makes them possible to calculate birch stand biomass (t/ha) on
Eurasian forests when using measuring taxation.
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Fig. 3: The ratio of observed values and the values derived by calculation of independent (a) and
additive (b) models of tree biomass.
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