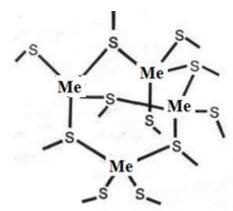
УДК 504.453+574.24

Бак. П. С. Елгин, Н. Н. Стягов Рук. Ю. А. Горбатенко УГЛТУ, Екатеринбург

ОЦЕНКА УРОВНЯ ЗАГРЯЗНЕНИЯ ПОВЕРХНОСТНЫХ ВОД РЕКИ ИСЕТЬ ИОНАМИ ТЯЖЕЛЫХ МЕТАЛЛОВ И ИЗУЧЕНИЕ ИХ ТОКСИЧЕСКИХ СВОЙСТВ НА БИОЛОГИЧЕСКИЕ РЕСУРСЫ ЭКОСИСТЕМЫ ВОДОЕМА

Среди многих экологических проблем особое место занимает загрязнение водных ресурсов. В настоящее время загрязнение рек отходами производства носит катастрофический характер, что обусловлено повышенным социально-экономическим развитием в пределах бассейна реки и часто низкой эффективностью работы очистных сооружений, в результате чего в русла рек сбрасывается большое количество недостаточно очищенных либо вообще неочищенных стоков. Особенно явно данная проблема прослеживается в крупных промышленных городах. К примеру, главная река города Екатеринбурга – река Исеть, крупный приток р. Тобола – подвержена сбросам многочисленных промышленных предприятий и характеризуется 4—5 классом опасности [1]. Например, только за 2019 г. в реку Исеть было сброшено порядка 520,02 млн м³ недостаточно очищенных сточных вод и 46,49 млн м³ без очистки. Следует отметить, что основное количество сбрасываемых в реку Исеть стоков содержит примеси тяжѐлых металлов (табл. 1).


Таблица 1

Среднегодовые концентрации ионов металлов в реке Исети с 2010 по 2019 гг. [1]

Загряз-	Год наблюдения									
-ӨКН										
щий	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
ИОН										
Cu ²⁺	7	6	8	8	6	5	10	5	10	8
	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК
$M\Gamma/дM^3$	0,007	0,006	0,008	0,008	0,006	0,004	0,01	0,005	0,01	0,008
Fe ²⁺	3,9	2,7	2	3	4,5	5	6,5	3	4,5	3
	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК
$M\Gamma/дM^3$	0,39	0,27	0,2	0,3	0,45	0,5	0,65	0,3	0,45	0,3
Zn ²⁺	2,4	2,4	2,5	2	2	3	2	3,5	4	3
	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК
$M\Gamma/дM^3$	0,024	0,024	0,025	0,02	0,02	0,03	0,02	0,035	0,04	0,03

Среднегодовые концентрации тяжелых металлов в поверхностных водах р. Исети в разы превышают допустимые санитарно-гигиенические нормативы, установленные для водоемов рыбохозяйственного назначения. Основными загрязняющими ионами являются ионы меди: по данным гидрохимических наблюдений, среднегодовые концентрации иона меди в реке Исети варьируются от 5 до 10ПДК, максимальное превышение в 10ПДК зафиксировано в 2016 и 2018 гг. Соединения железа в 2016 г. превышали рыбохозяйственный норматив более чем в 6 раз. Максимальное содержание ионов цинка отмечено в 2018 г. и составило 4ПДК.

Экологическая опасность загрязнения водных объектов ионами тяжелых металлов обусловлена высокой токсичностью данных компонентов. Тяжелые металлы являются протоплазматическими ядами, обладающими канцерогенным и мутагенным воздействием на живые организмы. Основное токсическое действия ионов металлов связано с ингибированием ферментов организма. Поскольку в состав всех ферментов входят различные S-, N-, OH-, CO_3 - и P-функциональные группы, металлы, поступающие в организм связывают эти группы в комплексные соединения (рисунок), что приводит к деполимеризации биомолекул и их инактивации и, как следствие, потере ферментом своих первоначальных функций.

Структура металлотионеина, установленная с помощью ЯМР [2]: Ме – ион металла; S – функциональная группа

Токсическое действие тяжелых металлов на биологические ресурсы водной экосистемы изучено косвенным методом, а именно путем исследования влияния различных концентраций ионов тяжелых металлов на коагуляцию животного белка.

Характер коагуляции животного белка к действию тяжелых металлов различной концентрации изучался визуальным методом путем последовательного добавления к 1 мл предварительно отфильтрованного рабочего раствора белка (соотношение белок : дистиллированная вода — 1:10) 1 мл исследуемой соли различной концентрации и 1 мл этилового спирта. Экспериментальные данные представлены в табл. 2.

Таблица 2
Изучение коагулирующего действия ионов металлов различной концентрации на устойчивость животного белка

No	Концентрация исследуемого	Выводы о коагулирующих свойствах животного белка*				
колбы	раствора, _{мг/дм} ³	CuSO ₄	FeSO ₄	ZnSO ₄		
1	0,003	0	0	О		
2	0,006	0	0	0		
3	0,009	0	0	0		
4	0,03	П	О	О		
5	0,06	П	0	О		
6	0,09	У	0	П		
7	0,3	X	0	X		
8	0,6	OX	П	X		
9	1,2	OX	X	OX		

Условные обозначения коагулирующих свойств: OX – очень хорошая; X – хорошая, Y – удовлетворительная; Π – плохая; O – отсутствует.

Из данной таблицы видно, что животный белок более чувствителен к ионам меди. Коагуляция белка в присутствии данного металла начинается при концентрации $0,03~{\rm Mr/дm^3}$, а с увеличением концентрации в $10~{\rm pas}$ ($C=0,3~{\rm Mr/дm^3}$) отмечена полная денатурация белка.

Связывание белка в комплексные соединения ионами цинка и железа наблюдается при концентрациях 0.09 и 0.6 мг/дм³ соответственно. Аналогично ионам меди ионы железа и цинка образуют устойчивые характерные комплексы при концентрациях 1.2 мг/дм³ и выше.

Таким образом, с учетом полученных экспериментальных данных и данных гидрохимических наблюдений за экологическим состоянием реки Исети можно отметить, что концентрация ионов железа в реке близка к критической и уже сегодня пагубно влияет на экосистему реки. Дальнейшее увеличение концентрации ионов металлов в водной экосистеме может привести к необратимым экологическим последствиям. «Точка невозврата» наступит, если концентрация ионов металлов в реке Исети по сравнению с таковой при существующем положении увеличится в 2–3 раза.

Библиографический список

1. Государственный доклад «О состоянии и об охране окружающей среды Свердловской области (с 2010 по 2019 г.): официальный сайт Министерства природных ресурсов и экологии Свердловской области. — Екатеринбург, 2010—2019. — URL.: http://https://mprso.midural.ru/article/show/id/1126 (дата обращения: 19.09.2020).

2. Плетеневой Т. В. Токсикологическая химия: учебник для вузов. – М.: ГЭОТАР-Медиа, 2005. – 512 с.

УДК 691-175

Бак. В. А. Незнанов, Д. В. Татаринова Рук. А. Е. Шкуро УГЛТУ, Екатеринбург

ПОКАЗАТЕЛЬ ТЕКУЧЕСТИ КОМПОЗИТОВ НА ОСНОВЕ ПВХ

Поливинилхлорид – синтетический термопластичный полярный полимер. Продукт полимеризации винилхлорида. Твердое вещество белого цвета. Выпускается в виде капиллярно-пористого порошка с размером частиц 100–200 мкм, получаемого полимеризацией винилхлорида в массе, суспензии или эмульсии. Порошок сыпуч и хорошо перерабатывается [1].

Впервые случайно получен французским химиком Анри Виктором Реньо в 1835 г., затем в 1872 г. исследован немецким химиком Ойгеном Бауманом. Широкое применение получил после 1926 г., когда американский химик Уалдо Лонсбери Семон изобрел способ улучшения эластичности полимера [2].

Поливинилхлорид стал одним из самых широко используемых пластиков в мире (находится в тройке по популярности вместе с полиэтиленом и полипропиленом). Применяется в строительстве (строительные профили: окна, двери, водостоки, отделочные материалы, трубы для водопровода и канализации незаменимы при наружных работах), медицине (замещение стеклянных и резиновых материалов), в автомобильной отрасли и т. д.

В настоящей работе было проведено исследование пластификации поливинилхлорида диметилфталатом, дибутилфталатом, диоктилтерефталатом, трибутилфосфатом, трихлорэтилфосфатом и трикрезилфосфатом. Оценка эффективности пластификации ПВХ делалась на основе данных об изменении показателя текучести расплава (ПТР) при увеличении содержания пластификатора. В задачи исследования входили подготовка рецептур композитов на основе поливинилхлорида, с различным содержанием пластификаторов и лубриканта (полиэтиленовый воск) методом механохимической активации, а также оценка текучести полученных смесей по показателю ПТР.

В качестве основного сырья был использован суспензионный поливинилхлорид марки СИ-67 (ТУ 2212-012-46696320-2008). Свойства ПВХ приведены в таблице. В качестве пластификаторов в работе использовались диметилфталат (САЅ 131-11-3), дибутилфталат (ГОСТ-8728-88), диоктилтерефталат (ТУ 2493-003-641238436-2013), трибутилфосфат (ТУ 20.14.53-221-44493179-2017), трихлорэтилфосфат (САЅ 115-96-8) и трикрезилфосфат (ГОСТ 5728-76).