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Abstract. Adaptation of plant communities is an important factor for maintaining their 

functioning and stability in changing conditions. The aim of our research is study of the effect of 

soil moisture regime on the species richness and biomass of the herb layer for old-growth 

coniferous forests in the Ural Mountains (Russia). The research has been carried out between 57° 

00'N; 60° 15''E and 57° 05'N; 60° 25'E.   The studied area is part of the Zauralsky hilly piedmont 

province, the Southern boreal forest region. Sample plots (0.25 hectares) were laid in pine forests 

growing in habitats with different moisture regimes: insufficient, optimal (stable), and excessive. 

The research was conducted in 2010. To determine the herb layer productivity, 10-20 subplots 

1x1 m in size were laid on each sample plot. Data analysis is based on the One-way ANOVA 

and species abundance distributions. It has been established that species richness in extreme 

(insufficient and excessive soil moisture regime (Cowberry pine forest and Pine forest with 

shrubs and sphagnum) and optimal (stable) soil moisture regime (Multi-herb pine forest) were 

found to vary significantly, with soil moisture regime being a statistically significant factor. By 

contrast, herb layer biomass is maintained fairly stable regardless of the soil moisture regimes. 

ANOVA showed no significant differences between pine forests growing under different soil 

moisture regimes. It has been found that biomass is maintained by increasing of the dominant 

species contribution to the overall biomass and increasing of the approximation function graph 

slope. At the same time, the parameter β of exponential and power approximating functions is 

increased and can be considered as an indicator of influencing on forest ecosystems and a 

measure of their adaptation to insufficient and excessive soil moisture. Thus, species abundance 

distributions can be used as method to measure the effects of factors that determine forest 

ecosystem composition and functioning. 

 

Keywords: soil moisture regime, forest type, old-growth coniferous forests, herb layer, species 

diversity, biomass, Ural Mountains.  

 

1. Introduction 

Adaptation to habitat features is important for the functioning and sustainability of ecosystems 

(Maiti et al., 2016; Muller et al., 2019). Therefore, research on this issue is of great importance. 

However, the number of articles on plant adaptation to external influences was relatively small 
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until 2005. Later, there was an increase in interest in this issue and the number of publications 

began to grow exponentially (Haunschild et al., 2016; Mengist et al., 2019). The urgency of the 

problem is sharply increasing due to global climate warming, probability of local and global 

environmental crises, restructuring of the river water regime (Safina & Golosov, 2018), reduced 

stability and regulatory functions of ecosystems, reduced stability of agriculture and forestry 

(Halofsky et al., 2018). Most researchers believe climate change will impact species resistance 

and occurrence, transform ecosystem biodiversity, structure and functions (Kellomäki, 2016; 

Murray et al., 2017; Bouchard et al., 2019). The problem is compounded by the widespread an 

increasing human population and the global consumption patterns growth. As a result, climate 

change is repeatedly amplified by anthropogenic impacts, and forest degradation is becoming 

more widespread, leading to the transformation of ecosystem services (Alamgir et al., 2014; 

Parrotta et al., 2016). It was found that 15 out of 24 recognized ecosystem services are in decline 

worldwide (Millennium Ecosystem Assessment, 2005). This will certainly affect the well-being 

of human society (Shaw et al., 2011). Therefore, the relevance and intensity of research on the 

adaptation possibilities of natural ecosystems increases every year (Galicia & Zarco-Arista, 

2014).  

To date, it has been proved that plant resistance to adverse abiotic and biotic factors is 

ensured by a wide variety of mechanisms functioning at different levels of organization (Bucher 

et al., 2019; Courbier & Pierik, 2019). An important role in plant adaptation to various stresses is 

played by variability of biochemical indicators (Aganina & Tarkhanov, 2016; Paraskevopulo et 

al., 2017; Ramakrishna & Gill, 2018). Changes in intensity of plant uptake of mineral elements 

are assumed to suggest adaptation to extreme environmental conditions (Habarova et al., 2015; 

Soares et al., 2019). 

The largest number of studies on plant adaptation is related to tree species. Generally, 

adaptation to one of the factors, the most often temperature (Hänninen, 2016; Montwé et al., 

2018), soil moisture occasionally, is studied (Guerin & Lowe, 2013; Polle et al., 2018). Special 

attention is paid to tree plant adaptation to urban settings and industrial pollution (Paraskevopulo 

et al., 2017; Legoshchina et al., 2019). Studies on grass adaptation are given less attention to and 

their focus is mainly shifted towards agricultural and ornamental crops. A special emphasis can 

be laid on the studies on herbaceous plant frost resistance (Franklin & Wigge, 2014; Bucher et 

al., 2019) and their adaptation to climate warming (Franklin & Wigge, 2014), as well as to 

competition for light (Courbier & Pierik, 2019), soil moisture (Ferreira et al., 2015; Astamirova 

et al., 2016), and to technogenic pollution (Shimalina et al., 2019). At that investigation of 

adaptation are often associated with high levels of uncertainty, and different methods show 

conflicting results, accounting for which are particularly relevant for forecasting and modeling 
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the state and stability of ecosystems (Straub & Grêt-Regamey, 2006). But predictive models 

themselves are also quite rare (Landuyt et al., 2013; Kamlun & Arndt, 2019; Calder et al., 2019). 

Therefore, we can conclude that, despite the huge number of publications on adaptation, many 

problems have not been solved yet (Fisher et al., 2009; Hölting et al., 2019). In addition, there 

are still many unresolved issues. In particular, mechanisms to maintain resistance, species 

diversity and productivity of ecosystems haven’t been clarified, especially when a number of 

species extinct. Furthermore, studies on ecosystem adaptation are extremely relevant because of 

the awareness of the importance of their ecosystem functions to humanity (Mumba et al., 2016). 

The studies carried out in the mountainous regions have shown that these ecosystems are 

particularly vulnerable to climate changes; factor impacts are more obvious and intense in this 

area. In addition, the exceptional importance of mountain ecosystems for climate and water 

control is recognized (Werners et al., 2016). Studies on these issues are extremely relevant for 

sustainable biological resources management. Their exceptional role in providing ecosystem 

services is also noted (Mengist et al., 2019), and the total number of ecosystem services provided 

by mountain ecosystems is 317. Therefore, the study of mountain ecosystems is extremely 

relevant for the sustainable management of biological resources. Despite this, mountain 

ecosystems have not been sufficiently studied (Mengist et al., 2019). 

The aim of our research is study of the effect of soil moisture regime on the species 

richness and biomass of the herb layer for old-growth coniferous forests in the Ural Mountains 

(Russia).  

 

2. Materials and Methods 

2.1. Study area 

Ural is a mountain region in Russia spreading between the East European and West Siberian 

plains. It is divided into Southern, Middle, Northern, Nether-Polar and Polar Ural. The Middle 

Urals is the lowest part of the mountain range. These mountains typically do not exceed 800 

meters above sea level. The region is an industrial center and is rich in minerals. The research 

has been carried out between 57° 00'N; 60° 15''E and 57° 05'N; 60° 25'E (Fig. 1).   The studied 

area is part of the Zauralsky hilly piedmont province, the Southern boreal forest region, based on 

the Sverdlovsk region forest type cadaster (Kolesnikov et al., 1973). It is a dissected foothill 

formed by alternating meridian uplands and chains with wide intermountain extended downhills 

with large lakes surrounded by peat swamps. Elevation is 200-500m above sea. The climate is 

moderately cold and subhumid. The frost-free season lasts 90-115 days (Kolesnikov et al., 1973). 

This area is typically forested. 21 forest types were identified and described in the study area 

(Kolesnikov et al., 1973). These types of forests are identified based on the geographical-genetic 
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approach in forest typology (Ivanova & Zolotova, 2014). The forest type in genetic typology is 

the main classification unit and represents a stage of the forest formation process, which 

combines all stages of recovery succession over the life of at least one generation of a common 

tree species. When selecting a forest type, the following factors are taken into account: 

uniformity of habitats, uniformity in ecological regimes (moisture, temperature, and other 

factors), common composition of the stand, common direction of successions, and reforestation. 

Compliance with these requirements assumes that the selected forest types will have a similar 

level of stand productivity (Ivanova & Zolotova, 2014). Thus the forest type of genetic typology 

differs significantly from the Association in Braun-Blanquet syntaxonomy (Westhoff & van der 

Maarel, 1973). Genetic typology allows us to take into account and study forest dynamics. This 

is why this scientific field is most popular for classifying vegetation in the Ural Mountains and 

beyond (Fomin et al., 2017). 

 

Figure 1. Study area 

 

Pine forest types were primary forests in most habitats of the Zauralsky hilly piedmont 

province. Fir and spruce forests are common along rivers and in the interfluves. Larch and 

Linden are found everywhere, but do not form pure stands. Intensive forestry has been carried 

out here for more than 200 years. In addition to wood harvesting, forests are used for grazing 

livestock, picking berries and mushrooms. Forest fires are also a common impact. Reforestation 

after logging and forest fires occurs with the change of the edifier. Pine and spruce forests are 

replaced by birch and aspen forests. The change of the forest-forming tree species can be either 

short-term or long-term. At present, secondary birch and aspen forests are becoming more 
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widespread. Nevertheless, small areas of forests close to the primary ones have been preserved 

and represent the most interesting object for research.  

Within boundaries of the Zauralsky hilly piedmont province, a wide variety of soils exists 

due to terrain complexity and geological structure, mesoclimate and vegetation cover diversity. 

The main background of soil cover in this region includes mountain forest soils. The study area 

is characterized by brown mountain forest soils (Haplic Cambisols) and sod-podzolic soils 

(Umbric Albeluvisols). Peaty and peat boggy (Histic Gieysols) prevail among bog soils. 

 

2.2. Study designed, sampling and measurements 

To carry out the research, sample plots (0.25 hectares) were laid in pine forests growing in habitats 

with different moisture regimes: insufficient, optimal (stable), and excessive. The research was 

conducted in 2010. Insufficient soil moisture regime is typical for the upper parts of the steep 

southern slopes. Brown mountain forest soils (Haplic Cambisols) with thickness of 15 cm, in 

places up to 40 cm, and a high content of crushed stone of the parent rock are common in these 

habitats. Soil moisture here mainly depends on weather conditions and varies greatly. Pine forests 

with Vaccinium vitis-idaea grow in these habitats (Fig. 2). According to the schemes of forest 

types developed for the Ural Mountains based on the principles of genetic forest typology, these 

forests are called cowberry pine forests (Kolesnikov et al., 1973). According to Braun-Blanquet 

syntaxonomy, these belong to the Vaccinio-Piceetea class, Dicrano-Pinion alliance (Westhoff & 

van der Maarel, 1973). The pine forest studied is 160 years old. During this time, it was not 

exposed to logging and intense forest fires. The forests were little used for picking berries and 

mushrooms. The height of the stand is 24 meters, pine basal area is 44 m2/ha, diameter is 36.5 cm. 

 

Figure 2. Research objects: a – insufficient soil moisture regime: pine forests with Vaccinium 

vitis-idaea on upper parts of the steep southern slopes (Cowberry pine forests), b – 

optimal (stable) soil moisture regime: pine forests with well developed multispecies 

herbaceous layer on gentle mountain slopes with thick soils (Multi-herb pine forests), c 

– excessive soil moisture: pine forests with Eriophorum vaginatum, Chamaedaphne 

calyculata, Ledum palustre (Pine forests with shrubs and sphagnum) 
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The optimal (stable) soil moisture regime is typical for gentle mountain slopes with sod-

podzolic soils (Umbric Albeluvisols). Soil profile thickness is about 90 cm. A pale-yellow 

podzolized horizon with a brown or grey tinge and 20-30 cm in thickness is common for soils. In 

these habitats, pine forests with well developed multispecies herbaceous layer are common, and 

they show features both of the Brachypodio Pinnati-Betuletea class and Vaccinio-Piceetea 

(Westhoff & van der Maarel, 1973). According to the schemes of forest types developed for the 

Ural Mountains based on the principles of genetic forest typology, these forests are called multi-

herb pine forests (Kolesnikov et al., 1973). The pine forest studied is 150 years old. During this 

time, it was not exposed to logging and intense forest fires. The height of the stand is 28.9 meters, 

pine basal area is 42.3 m2/ha, diameter is 35.5 cm. In addition to pine (Pinus sylvestris), the stand 

contains birch (Betula pubescens and B. pendula) and Siberian spruce (Picea obovata). 

Habitats with excessive soil moisture are characterized by Histic Gieysols with profile 

thickness of more than 70 cm. There are sphagnum tiers 10-15 cm in thickness and dark brown 

peat horizon with layers differed in color and density. In these habitats, pine forests with 

Eriophorum vaginatum, Chamaedaphne calyculata, Ledum palustre. They should be classified as 

the Vaccinietea uliginosi class. These forests have similarities to both of the Vaccinio-Piceetea 

class and the Oxycocco-Sphagneta class (Westhoff & van der Maarel, 1973). According to the 

schemes of forest types developed for the Ural Mountains based on the principles of genetic forest 

typology, these forests are called pine forests with shrubs and sphagnum (Kolesnikov et al., 1973). 

The pine forest studied is 70 years old. During this time, it was not exposed to logging and intense 

forest fires. The studied pine forests are actively used for collecting cranberries. The stand is low-

growing and sparse. 

Comprehensive forest typological and soil studies were carried out based on generally 

accepted research methods (Ivanova, 2017). Overstorey and understorey layers was studied. 

Detailed comparative analysis of the tree stand, species diversity and species composition of the 

studied forest types were presented earlier (Ivanova, 2019, 2020; Zolotova & Ivanova, 2015). 

To determine the herb layer biomass (the herb layer included all non-woody plants and 

woody plants whose height did not exceed the herb height), 10-20 subplots 1x1 m in size were 

laid on each sample plot. Their quantity depended on the vegetation cover mosaic. The study was 

carried in July 2010. Herb cover was determined by fractional counting method (Ivanova, 2017): 

a wooden frame 1x1 m in size, divided into 0.1 x 0.1m boxes, was used in the research. To 

evaluate the species cover, each box was taken as 1%. To determine the biomass of the herb in 

1x1 m plots, plants were cut at soil level, sorted by species, dried to absolutely dry condition at 

105°C and weighed.  

2.3. Data analyses 
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Data analysis is based on the One-way ANOVA and HSD test for multiple comparisons. In 

addition, we used the species abundance distributions as a new and promising method 

(Puzachenko, 2016; Guerin et al., 2017; Villa et al., 2019). Species abundance distributions for 

aboveground herb biomasss constructed as follows: all herb species are sorted in descending 

order of biomass, the ordinal number of the species in this series is the rank number (rank). 

Approximation was carried out by means of exponential and power functions in Excel. 

 

3. Results 

In all studied forest types, Pinus sylvestris L is a forest edificatory. Such accompanying species 

as Betula pubescens Ehrh., B. pendula Roth. can be found in the tree stand, and Larix sibirica 

Ledeb. Despite high similarity of the tree stand, the species composition of the herb layer of the 

studied forest communities varies dramatically (Table 1). Species richness in extreme 

(insufficient and excessive soil moisture regimes) and optimal (stable) soil moisture regime varies 

statistically significantly, and soil moisture is a statistically significant factor (Fig. 1, Table 2). 

Species richness sharply decreases with insufficient and excessive soil moisture, as the number 

of species capable to grow in extreme habitat is not high.  

 

Table 1. Diagnostic and dominant species of the herb layer in the studied Middle Ural forests 

Diagnostic species forest types Dominant species forest type 

Insufficient soil moisture regime: pine forests with Vaccinium vitis-idaea on upper parts 

of the steep southern slopes (Cowberry pine forests) 

Antennaria dioica (L.) Gaertn., Vaccinium 

vitis-idaea L. 

Calamagrostis arundinacea (L.) Roth,  

Vaccinium vitis-idaea L. 

Optimal (stable) soil moisture regime: pine forests with well developed multispecies 

herbaceous layer on gentle mountain slopes with thick soils (Multi-herb pine forests), 

Aegopodium podagraria L., Heracleum 

sibiricum L., Lathyrus vernus (L.) Bernh., 

Viola mirabilis L. 

Calamagrostis arundinacea (L.) Roth, 

Brachypodium pinnatum (L.) Beauv., Rubus 

saxatilis L. 

Excessive soil moisture: pine forests with Eriophorum vaginatum, Chamaedaphne 

calyculata, Ledum palustre (Pine forests with shrubs and sphagnum) 

Eriophorum vaginatum L., Chamaedaphne 

calyculata L., Ledum palustre L. 

Eriophorum vaginatum L., Chamaedaphne 

calyculata L., Ledum palustre L. 
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Figure 1. Species richness of the herb layer (per 1 m2) of three forest types: average value and 

95% interval; 1 – Insufficient soil moisture regime: Cowberry pine forest, 2 – Optimal 

(stable) soil moisture regime: Multi-herb pine forest, 3 – Excessive soil moisture: Pine 

forest with shrubs and sphagnum 

 

Table 2. HSD test results for three forest types in Middle Ural forests 

Soil moisture regime / forest 

type 

Insufficient  Optimal 

(stable)  

Excessive  

For species richness 

Insufficient soil moisture regime / 

Cowberry pine forest  
0.0001* 0.2058 

Optimal (stable) soil moisture regime 

/ Multi-herb pine forest  
0.0001* 

 
0.0001* 

Pine forest with shrubs and 

sphagnum 
0.2058 0.0001* 

 

For aboveground biomass 

Insufficient soil moisture regime / 

Cowberry shrub pine forest  
0.633 0.871 

Optimal (stable) soil moisture regime 

/ Multi-herb pine forest 
0.633 

 
0.401 

Excessive soil moisture / Pine forest 

with shrubs and sphagnum 
0.871 0.401 

 

Note: * - statistically significant differences at the significance level 0.05 

 



 9 

However, herb layer productivity is maintained sufficiently stable regardless of the 

moisture conditions. ANOVA showed no significant differences between pine forests growing 

under different soil moisture regimes (F (2.27) = 0.98, p = 0.39) (Fig. 2).  
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Figure 2. Aboveground biomass of the herb layer (in absolutely dry condition, g/m2) of three 

forest types: average value and 95% interval; 1 – Insufficient soil moisture regime: 

Cowberry pine forest, 2 – Optimal (stable) soil moisture regime: Multi-herb pine 

forest, 3 – Excessive soil moisture: Pine forest with shrubs and sphagnum  

 

Species abundance distributions for aboveground herb biomass for three forest types under 

different soil moisture regimes is shown in figures 3, 4, and 5. Exponential and power functions 

were used for approximation. Both functions produce satisfactory results, but there are 

peculiarities for different habitat. The largest number of species is registered in multi-herb pine 

forests at the optimal (stable) soil moisture regime (Fig. 4). The species abundance distributions 

are the most flattened. The exponential function showed better approximation. This indicates that 

the species abundance distribution corresponds to the theoretical law of Gibbs (or Motomura) 

(Whittaker, 1980). R2 makes 0.856, the parameter value β (power value) is 0.11. It has been 

established that this distribution model is realized when the system state is linearly dependent on 

the resource (Shitikov et al., 2011). Regarding insufficient and excessive soil moisture regime, 

both exponential and power function are well suited to approximate species abundance 

distributions (Fig. 3 and 5). R2 is more than 0.9. When the exponential function was used for 

approximation, an increase in the parameter β up to 0.51 was revealed for insufficient soil 

moisture regime (cowberry pine forests) (Fig. 3) and up to 0.93 for excessive soil moisture regime 

(pine forest with shrubs and sphagnum) (Fig. 5). 
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The approximation result obtained by means of the power function (Pareto distribution 

(Shitikov et al., 2011) showed that the parameter value β (power value) increases from 1.72 

(optimal (stable) soil moisture regime) to 2.92 for insufficient soil moisture regime (cowberry pine 

forests) and to 3.73 for excessive soil moisture regime (pine forests with shrubs and sphagnum). 

In addition, the increase of R2 from 0.73 for optimal (stable) soil moisture regime (multi-herb 

pine forests) to 0.95 for insufficient soil moisture regime (cowberry pine forests) and to 0.91 for 

excessive soil moisture regime (pine forests with shrubs and sphagnum) can be considered a 

transition to logarithmic ecosystem species dependence on the resource. Thus, while maintaining 

the aboveground biomass, the increase of β parameter of exponential and power aproximating 

functions can be considered an indicator of soil moisture factor on the ecosystem and a measure 

of its adaptation to insufficient and excessive soil moisture regime. 

 

 

Figure 3. Species abundance distributions of the aboveground herb layer biomass of insufficient 

soil moisture regime (cowberry pine forest) in Middle Ural Mountains: the solid line – 

approximation by an exponential function, the dashed line – approximation by a power 

function 
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Figure 4. Species abundance distributions of the aboveground herb layer biomass of optimal 

(stable) soil moisture regime (Multi-herb pine forest) in Middle Ural Mountains: the 

solid line – approximation by an exponential function, the dashed line – approximation 

by a power function 

  
Figure 5. Species abundance distributions of the aboveground herb layer biomass of excessive 

soil moisture regime (pine forest with shrubs and sphagnum) in Middle Ural 

Mountains: the solid line – approximation by an exponential function, the dashed line 

– approximation by a power function 
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3. Discussion 

The problems of biodiversity (Mirkin et al., 2014; Sannikov et al., 2017; Ivanova, 2019) and 

forest productivity (Usoltsev et al., 2011, 2019; Schepaschenko et al., 2017), ecology of 

individual species of woody plants (Kalashnikova & Makhnev, 2013; Maiti et al., 2016; 

Sannikov et al., 2018), history of vegetation development (Panova & Antipina, 2016), 

reforestation and stand formation (Tantsyrev & Sannikov, 2008; Menshchikov et al., 2013; 

Fomin et al., 2015; Zalesova et al., 2019) have been actively discussed in the literature for the 

Ural Mountains, but our study on the adaptation of forest ecosystem vegetation to different 

moisture regimes is one of the first for taiga mountain forests in Russia. It has estimated the 

stability and trends of changing species composition and productivity when changing the 

moisture regime. The identification of the herb layer biomass stability in old-growth pine forests 

growing in sharply different habitats is an interesting and important result. It can be interpreted 

as an adaptation of the forest ecosystem to the studied factor. Less adapted species are replaced 

by more adapted ones, and the General aboveground biomass of the herb layer remains stable. In 

addition, identifying species diversity and herb layer biomass quantifying in the coniferous 

forests of the Ural Mountains can help to better understand how ecosystem services depend on 

soil moisture regime. For example, it is crucial to understand that reducing species diversity in 

adverse habitats will not necessarily lead to reduced stability and productivity. But the adapt 

ability has limits and it needs to be determined. It can be assumed that adaptation allows many 

other ecosystem functions to be preserved. It is of great importance, since the protection of soil 

and water resources is an important ecosystem service of the coniferous forests of the Ural 

Mountains. The ecosystem services for preserving moisture in case of insufficient soil moisture 

on steep mountain slopes are especially important. It is achieved by reducing the rate of 

snowmelt and water runoff. Under the same conditions, protection of the soil from erosion is of 

great importance (Lebedev, 2011). Forests in waterlogged habitats perform the function of 

preserving the quality of water resources (Lebedev, 2011).  

 It can also be assumed that the adaptation of the forest ecosystem is positively associated 

with climate-regulating functions, since the collapse of primary forests and their replacement 

with secondary communities inevitably leads to a decrease in it (Pavlov & Bukvareva, 2007). 

The location of the Ural Mountains on the border of Europe and Asia makes them particularly 

sensitive to climate change (Kapralov et al., 2006) and it is important to be able to reliably assess 

the impact of it on mountain forests and their ecosystem services. Therefore, it is important to 

understand the mechanisms of adaptation and the limits of the forest ecosystem's resilience to 

various natural and anthropogenic factors. For this purpose, we tested (for the first time for 

mountain forests) species abundance distribution. This method is rarely used in forest ecology. 
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However, the existing single attempts to use it proved to be effective for solving the tasks set 

(Cheng et al., 2011; Li-Xia et al., 2011; Yan et al., 2013). In our research, species abundance 

distribution also performed well and provided a number of new and important conclusions for 

sustainable forest management. Using species abundance distribution analysis, it was found that 

biomass is maintained by increasing of the dominant species contribution to the overall biomass 

and increasing of the approximation function graph slope. At the same time, the parameter β of 

exponential and power approximating functions is increased and can be considered as an 

indicator of influencing on forest ecosystems and a measure of their adaptation to insufficient 

and excessive soil moisture. Thus, species abundance distributions can be used as universal, 

accurate, and intuitively comprehensible methods to measure the effects of determined forest 

ecosystem composition and functioning. Their advantage is also to provide an opportunity to 

compare forest communities that differ in both species richness, and species composition. In 

addition, this method may prove to be a useful tool to protect nature in the context of the analysis 

and assessment of species rarity in different habitats. 

 

4. Conclusion 

Thus, the features of the species richness and biomass of the herb layer were revealed for old-

age coniferous forests growing under different soil moisture regimes. It has been established that 

species richness in extreme (insufficient and excessive soil moisture regime (Cowberry pine 

forest and Pine forest with shrubs and sphagnum) and optimal (stable) soil moisture regime 

(Multi-herb pine forest) were found to vary significantly, with soil moisture regime being a 

statistically significant factor. By contrast, herb layer biomass is maintained fairly stable 

regardless of the soil moisture regimes. ANOVA showed no significant differences between pine 

forests growing under different soil moisture regimes. It has been found that biomass is 

maintained by increasing of the dominant species contribution to the overall biomass and 

increasing of the approximation function graph slope. At the same time, the parameter β of 

exponential and power approximating functions is increased and can be considered as an 

indicator of influencing on forest ecosystems and a measure of their adaptation to insufficient 

and excessive soil moisture. Thus, species abundance distributions can be used as method to 

measure the effects of factors that determine forest ecosystem composition and functioning. 
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