УДК 634.0.865

м. Е. Мельникова (Уральский лесотехнический институт)

ИЗЫСКАНИЕ ОПТИМАЛЬНЫХ РЕЖИМОВ ПОЛУЧЕНИЯ ПЛИТНОГО МАТЕРИАЛА ИЗ РИСОВОЙ СОЛОМЫ БЕЗ ДОБОВЛЕНИЯ СВЯЗУШИХ

Значительным резервом сырья для производства плитных материалов является рисовая солома, запасы которой из года в год увеличиваются [1].

Известны работы [2,3] по получению плитного материала из такого одревесневшего растительного сырья как стебли хлопчатника, костра кенафа, лувга подсолнечника за счет использования природной реакционной способности компонентов этого сырья.

Химический состав рисовой соломы показывает [4], что в последней имеются в достаточных количествах лигнин, водорастворимые и легкогидроливуемые полисахариды — компоненты, которые необходимы для производства плитного материала без добавления связующих. Это дало основание предположить возможность получения плитного материала из частиц рисовой соломы.

Исследования проводились на дробленых частицах рисовой соломы.

T а блица 1 Фракционный состав дробленой рисовой соломы, (%)

Равмер	1	5	!	4	1	3	1	2	!	1	1	0,5	1	0,25
ячеек сит, мы	1	4	i	3	1	2	1	1	-	0,5	-	0,25	!	0
%	1 1	1.5	1	4.5	1	12,5	1	13.5	1	28.5	1	23,5	!	16

Для изыскания оптимальных условий изготовления плитного материала толщиной 10 мм из дробленой рисовой соломы применен метод многофакторного планирования экстремальных эксперименто 5, а именно полный и дробный факторный эксперимент типа 2³

На основании априорной информации варьировали факторы: X_1 — температура горячего прессования, $^{\circ}$ C; X_2 — влажность исходного сырья, %; X_3 — продолжительность горячего прессования, мин/мм толщины готовой плиты.

В исследованиях были использованы три значения давления прессования (2,5; 5 и 9 мПа). Опыты с дробленой рисовой соломой при давлении прессования 2,5 мГа проводили по полному факторному эксперименту типа 2^3 (табл.2), а при давлениях прессования 5 и 9 мПа по дробному — типа 2^{3-1} (табл.3,4).

Таблица 2 Матрица планирования и результати опытов для плитного материала из дробленой рисовой соломы (давление прессования 2,5 МПа)

	1 Фа	ктор	ы !	on the subscripe	Or	клики		A Partie of
	$ \widetilde{X}_1 $	\tilde{x}_{2}	Ĩ3	y ₁	y ₂	1 13	y ₄	J У ₅
Основной уровень 0	170	19	1,0					
Единица варьирования	16 10	3	0,2	ar an ar	Nas d	ple II		
Верхний уровень +1	180	22	1,2	and the second			And the Later	
Нижний уровень -1	160	16	0,8		4.1		32	Aire.
Опыты			44.75	1 1	1			- Alert -
1	-1	-1	-1	8,2	65,9	87,6	1070	9,9
2	+1	-1	-1	11,2	51,1	57,5	1100	10,3
3	-1	+1	-1	9,0	47,6	62,4	1080	10,2
4	+1	+1	-1	12,1	30,3	40,5	1120	10,9
. 5	-1	-1	+1	10,3	49,1	61,5	1100	9,9
6	+1	-1	+1	9,7	34,4	52,3	1130	9,1
7	-1	+1	+1	11,4	46,3	59,2	1090	10,9
8	+1	+1	+1	10,5	37,5	42,0	1130	10,5
8 .	0	0	0	13,0	33,0	50,2	1110	10,1
	1000	-		10,3	45,3	57,9	1100	10,2
\mathcal{E}_{i}	-	-	-	+0,575	-6,95	-9,80	+18	-0,013
θ_2	-	-	-	+0,450	-4,85	-6,85	+4	+0,413
θ_3	12.	-		+0,175	-3,45	-4,12	+9	-0,113
612	-	-	11.	-0,025	+0,43	+0,03	+4	+0,875
B_{l3}	-	-	-1	-0,950	+1,08	+3,20	-1	-0,288

Продолжение таблицы 2

17 1000-01	! 4	акто	рн		! Отклики						
	$ \widetilde{X}_1 $	12	1X3	1 y ₁	1 y ₂	l y ₃	y ₄	У ₅			
B23		-	-	+0,025	+4,93	+3,70	6	+0,188			
Stys	-	-	-	1,657	11,69	13,42	36,2	0,612			
5483	-	-	-	0,588	4,14	4,74	12,6	0,217			
SIBIS	-	-	-	0,552	4,08	4,49	13,2	0,225			
f	-	-	-	8	8	8	8	8			

Определялись следующие физико-механические показатели, рассматривающиеся, как отклики:

У1 - предел прочности при статическом изгибе, ЖПа;

У2 - разбухание по толщине за 24 часа, %;

У3 - водопоглощение за 24 часа, %;

У4 - плотность, кг/м⁸

УБ - абсолютная влажность, %.

Таблица З

матрица планирования и результать опытов для плитного материала из дробленой рисовой соломы (давление прессования 5 MIa)

		Ι Φ	акто	рн		10.0	Отклики	And the second	T. Sandanoff
		X ₁	IX2	IX3	y ₄	1 y ₅	1 3	y ₄	y ₅
Основно уровень		170	14	1,2	10	41			
Единица варьиро ния		10	4	0,3					
Верхния уровень	+1	180	18	1,5			3. 41.11		7.0
Нижний уровень	-1	160	10	0,9		To give the			
Опыты	2	+1	-1	-1	23,2	55,0	62,6	1210	7,8
3.1	3	-1	+1	-1	16,0	30,0	33,9	1240	10,2
1111	5	-1	-1	+1	20,9	52,1	59,4	1220	8,2
200	8	+1	+1	+1	16,7	15,4	20,8	1230	11,1
The second	9	0	0	0	23,4	28,1	32,9	1260	+7,8
	6.	-	-	-	19,2	38,1	44,2	1230	9,2
- 3	6.		-	-	+0,750	-2,92	-2,47	-2,5	+0,125
	82		-	-		-15,42	-16,82		+1,325
	1	*			1	60			

Продолжение таблицы 3

A Company of the Comp		акто	рн	1				
The second of the second	$ \widetilde{X}_1 $	1X2	IX3	1 y ₁	y ₂	1 y ₃	y4.	1 y ₅
63	-	-		-0,400	-4,38	-4,07	-2,5	+0,325
Sigs	-	-	-	2,423	8,42	7,05	'28,3	0,414
5863	-	-	-	1,211	4,21	5,52	14,1	9,207
Sibis	-	-	-	1,190	3,84	3,37	16,0	0,199
f	-	-	-	4	4	4	4	4

Ввиду того, что одновременное достижение наилучших вначений всех перечисленных откликов является нереальной вадачей, ив рассмотренного набора откликов были выбраны два, наиболее полно характеризующие свойства плит - У1 и У2. Предельное вначение одного отклика при ограничениях, накладываемых на другой, служило параметром оптимивации.

Матрицы планирования, результаты экспериментов, выборочные оценки коэффициентов регрессии и их ошибки представлены в табл. 2,3,1.

Таблица 4 Матрица планирования и результать опытов для плитного материала из дробленой рисовой соломы (давление прессования 9 МПа)

	• Фа	ктор	ЭН	- 150 - 00	0:	гклики		
Maria de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del la companya del companya de la companya de la companya del companya de la companya del comp	\widetilde{X}_1	Ñ2	X ₃	y ₁	1 42	1 y3	y ₄	1 y ₅
Основной уровень 0	170	11	1,2					
Единица варьиро вания	10	3	0,2		1		ē. :	
Верхний уровень +1	180	14	1,4	10 m 10 m			Value of the second	-
Нижний уровень -1	160	8	1,0					
Опыты	1		100		1.50		25	1
1	-1	-1	-1	29,5	52,7	5,31	1290	6,5
4	+1	+1	-1	25,2	28,3	28,9	1300	9,1
6	+1	-1	+1	30,3	25,7	24,7	1320	6,6
7 :	-1	+1	+1	26,3	31,6	26,7	1310	9,3
9	0	0	0	27,8	28,4	26,2	1320	7,2
в.	-		7-6	27,8	34,6	33,4	1310	7,9

Продолжение таблицы 4

	I Фа	ктор	H		Отклики						
	X1	X2	\tilde{x}_3	У1	y ₂	1 3	y 4	1 y ₅			
в,	-	-	-	-0,075	-7,57	-4,55	+5,0	-0,025			
Bz	-	-	-	-2,075	-4,62	-5,55	0	+1,325			
B3	3	-	_	+0,475	-5,92	-7,65	+10,0	+0,075			
Siyi	-2	-	-	2,043	4,68	5,21	36,7	0,436			
5163	-	-	-	1,021	2,34	2,61	18,4	0,218			
S{bi}	-	-	-	1,220	2,16	2,42	22,8	0,207			
f		-	10-14	4	4	4	4	4 .			

Физико-механические испытания образцов проводились после кондициониро вания их до эксплуатационной влажности (9-10%). Каждый результат испытаний есть среднее из двух запрессовок, рандомизиро ванных во времени.

На данном этапе исследования нас интересовало отыскание оптимальных режимов получения плитного материала из дробленой рисовой соломы, поэтому было решено ограничиться данными исследованиями и предсказать искомые оптимальные режимы. Условия изготовления и результаты реализованных опытов представлены в табл.5.

Таблица 5 Условия проведения и результать реализованных опытов

Давление прессова ния, МПа	1 1	X ₂	, X3	y ₁	^y 2	уз	y ₄	у ₅
120	170	23	1,0	11,8	46,5	58,8	1140	7,9
2,5	180	23	1,2	12,8	34,0	47,5	1150	8,1
1111	180	22	1,2	10,5	37,5	42,0	1130	10,5
5	170	16	1,2	21,8	26,8	30,1	1270	8,2
	170	18	1,2	20,6	23,7	28,7	1250	9,3
9	170	11	1,2	27,8	28,4	26,2	1320	7,2
T	170	12	1,2	27,1	27,0	25,6	1310	7,8

Виводи:

а) получить плитный материал с удовлетворительными свойствами при давлении прессования 2,5 МПа не удалось при всех опробованных в работе сочетаниях температуры, продолжительно-

сти горячего прессования и влажности исходного сырья;

- б) при увеличении давления прессования с 2,5 до 5 МПа прочность плит, полученных по оптимальным режимам, увеличилась на 45%, разбухание снизилось в 1,3 раза. Увеличение давления с 5 до 9 МПа приводит к дальнейшему росту прочности (на 55%), а разбухание при этом незначительно увеличивается:
- в) с увеличением давления прессования оптимальная влажность сирья уменьшается;
- г) для производства плитного материала из дробленой рисовой соломи рекомендуются давления проссования 5 и 9 мПа.

Рисовая солома должна рассматриваться как вполне полноценное сырье для изготовления плитного материала без добавления связующего разного назначения.

Выбор режима изготовления плитного материала из рисовой соломы должен определяться назначением или условиями службы конструкций из данного материала.

Литература

- 1. Натальин Н. Б., Рисоводство, М., "Колос", 1973.
- 2. Петри В. Н., мезенцев А. В. Пластик из гуза-пам. "Сельское хозяйство Узбекистана", 1972, № 9.
- 4. Шарков В. И., куйбина Н И., Соловьева Ю. П. Количественный химический анализ растительного сырья. М., "Лесная промышленность", 1968.
- 5. Лаварева А. Д. Использование математического планирования экспериментов в исследованиях по получению ЛУДП. Свердловск, изд.УЛТИ, 1971. (Тр.УЛТИ, вып.24)