УДК 674.8-41.01

Р.А.Бояркина, Е.В.Зайцев (Свердловский институт народного хозяйства)

АКУСТИЧЕСКИЕ ИССЛЕДОВАНИЯ ДРЕВЕСНЫХ ПЛИТНЫХ МАТЕРИАЛОВ НА УСТАНОВКЕ "ЗВУК — 1"

Хорошая акустика может быть достигнута в помещениях, в которых выполняются спедующие основные условия [1, 2]

- 1. Все места в помещении должны быть хорошо обеспечены звуковой энергией, то есть интенсивность или сила эвука должна быть достаточна на каждом месте.
- 2. В помещениях должно образовываться возможно более равномерное (диффузионное) звуковое поле, исключающее возмикновение эха вспедствие слишком больших интервалов по времени пробега прямых и отраженных звуковых лучей, а также концентрацию звука и другие нежелательные явления.

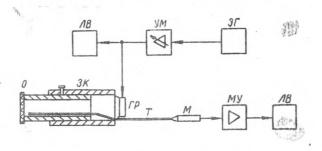
Выполнение этих требований в значительной степени определяет форму и особенно внутренною отделку помещения. Требование достаточной интенсивности звука на местах является преимущественно вопросом формы помещения; целе сообразное распределение звука зависит от формы и от оборудования помещения, а время реверберации определяется наряду с объемом помещения также и характером его внутренней отделки и количеством находящихся в помещении подей. Следовательно, звукопоглощающими свойствами отделочного материала в значительной степени определяется время реверберации.

Имеющиеся в литературе оценки звукопоглощающей способности древесностружечных плит и пластиков без добавления связующих, к сожалению, не всегда точны и не повволяют судить о применимости этих материалов для обеспечения акустического комфорта, то есть надлежащих условий слухового восприятия или снижения уровня шума.

Существует два способа для определения авукопогложающих

свойств материалов: реверберационный способ и способ стоячих волн.

Основным принципом реверберационного метода является сравнение времени реверберации в камере без акустических материалов и при внесении в нее испытуемых образцов. Метод измерения в реверберационных камерах дает результать, наибо-лее блиекие к действительным. Однако он требует значительного количества материалов (12-14 м²) и сложного оборудования. Поэтому часто пользуртся измерениями других легко определяемых параметров, зная которые, можно рассчитать величину коэффициента звукопоглощения. К таким параметрам можно отнести величину звукового давления, получаемого в звужовой камере при возникновении в ней стоячих волн.


При интерференции двух встречных волн, имеющих одинаковне амплитуды, возникает колебательный процесс, называемый "стоячей волной". Практически стоячие волны можно получить в трубе при отражении от преграды. Падающая на преграду волна и бегущая ей навстречу отраженная, налагаясь друг на друга, дают стоячую волну.

При проведении исследований необходимо было решить следующие вопросы:

- 1), с помощью измерительной трубы (звуковой установки) определить звукопоглощающую способность опытных образцов древесных плитных материалов на разных частотах, выявить связь между акустическими и физико-механическими свойства-ми.
- 2), обобщить материалы экспериментальных исследований и дать рекомендации по использованию древесных плитных материалов в качестве акустических.

Исследования коэффициента авукопоглощения древесных плитных материалов проводились на акустической установке с камерой "Звук-1", разработанной Свердловским филистом ВНИИМ им. Д.И.Менделеева, со следующими изменениями: генератор ГЗ-33 был заменен генератором ГЗ-18, усилитель мощности ТУ-100 заменен усилителем мощности марки УМ-50А, исключены из системы частотомер ЧЗ-28 и осциллограф С1-19. Блок-схема акустической установки со звуковой камерой,

состоящей из двух цининдрических труб разного диаметра и переменной длины, показана на рисунке

Блок-схема для определения коэффициента авукопогломения древесных плитных материалов с помощью авуковой камеры "Звук-1": ЗК - авуковая камера: 0 - образец: Гр - громкоговоритель тип 1А-16: Т - трубка: М - микрофон тыла МК-6: МУ - микрофонный усилитель типа БП-22; ЛВ ламповий вольтиетр типа ВЗ-7; УМ - усилитель мощности типа УМ-50А; ЗГ- генератор звуковой частоты типа ГЗ-18.

Измерения проводили на частотах 512, 1030, 2400, 3300, 4400 Г ц. В процессе работи выяснялось также влияние на коэффициент авукопоглощения вида подножки и накокрасочного покрытия.

В целях минимизации числа опытов на первом этапе исследования, как способ сокращения перебора вариант, планировали эксперимент с использованием латинского квадрата второго порядка размером 5 х 5, число опнтов в котором равно 25 3. Эксперимент столь высокой дробности можно рассматривать как отсемвающий эксперимент, позволяющий выделить перспективные или оптимальные комбинации и отсеять неприемлемне.

Параметром оптимивации является коэффициент авукопоглошения.

Исследовалось влияние следурщих факторов:

X₁ - тип материала: Др - древесина; С - древесностру-

жечные плиты; A — древесные пластики без связующих производства Памарского леспроихова; B — древесные пластики без связующих производства Херсонского целлюловно-бумажного комбината; A — плиты из сплавной еловой коры.

 X_2 - частотн: B_1 -512 Гц; B_2 - 1030 Гц; B_3 -2400 Гц; B_4 -3300 Гц; B_5 -4400 Гц.

 X_3 — тип покрытия: а — полиэфирный лак ПЭ-246; в — нитроцеллоловный лак НЦ-218; с — белая нитроэмаль НЦ-23; \mathcal{L} — без покрытия; в — матирующий лак НЦ-243.

План и результаты эксперимента показаны в табл. 1.

Таблица 1 План и результаты эксперимента

1/2	В1	B ₂	B3	B ₄	B ₅
Др	a 0,053	0,059	0,050	d 0,110	e 0,120
С	d 0,078	e 0,064	a 0,042	B 0,060	c 0,071
A	B 0,045	0,043	d 0,049	e 0,054	a 0,054
В	e 0,034	a 0,034	0,035	0,037	d 0,067
Д	c 0,025	d 0,040	e 0,030	a 0,034	B 0,049

План рандомизирован, число повторных наблюдений m=5. При проверке гипотезы о значимости линейных эффектов использован критерий Фишера. Для пятипроцентного уровня значимости при степенях свободн $f_1=4$ и $f_2=100$ критическое вначение F — критерия равно 2,48, что значительно ниже внисленных значений.

Таким образом, на коэффициент звукопоглощения существенно влияют все исследуемые факторы. Наибольшее влияние оказывает тип материала (фактор X_1).

Для проверки различия средимх значений исследуемых факторов применялся множественный ранговый кригерий Дункана [3].

Как показнвают результати экспериментов, коэффициент ввукопоглощения зависит от типа исследуемого материала, вида лакокрасочного покрытия и частоты. Поскольку все варьируемые факторы оказались значимыми и такие эксперименты по прозвучиванию проводились впервые, мы сочли целесообразным продолжить исследования, подтверждающие выявленные закономерности при большем диапозоне варьирования факторов. Проводили прозвучивание тех же материалов с покрытием и без него на всех перечисленных выше частотах. Результаты экспериментальных данных сведены в табл. 2.

Анализируя полученные данные экспериментальных исследований, можно сделать следующие выводы.

- 1. Коэффициент звукопоглощения зависит от показателей физико-механических свойств исследуемого материала, обусловленных его структурой. Из исследуемых нами древесных плитных материалов наибольшим коэффициентом звукопоглощения обладает древесина, а наименьшим плитн из сплавной еловой коры. Это можно объяснить тем, что на преодоление сопротивления сил трения о стенки пор звуковые волны затрачивают энергию [4]. Процесс звукопоглощения протекает тем интенсивнее, чем легче звуковые волны проникают в толщу материала.
- 2. Покрытие плит лакокрасочными материалами снижает величину коэффициента эвукопоглощения; последний зависит от типа и технологии нанесения лакокрасочного покрытия, так как различные лакокрасочные материалы имеют неодинаковую шероховатость поверхности и толщину. Установлено, что древесные материалы с покрытием ПЭ-246, обладающие гладкой зеркальной поверхностью, имеют коэффициент эвукопоглощения наименьший по сравнению с материалами, покрытнми НЦ-218, НЦ-243, НЦ-23.
- 3. Коэффициент звукопоглощения исследуемых материалов изменяется в зависимости от частоты звука. Установлено, что у всех исследуемых нами древесных материалов, в том числе и без связующих, проявляется тенденция к увеличению коэффициента звукопоглощения, так на частоте 512 Гц коэффициент звукопоглощения у плит без связующего 0,056, у древесины 0,080, у ДСТП 0,078, а на частоте 4400 Гц соответственно 0,074, 0,160 и 0,114.

Таблица 2 Коэффициент звукопоглощения илитных материалов

Тип	Тип !пок- !рнтия	Плот- ность, кг/м	Частотн					
мате- риала			B ₁	! B2	! B3 !	В4	! B5	
Др	a	490	0,053	0,059	0,048	0,073	0,099	
	В	470	0,057	0,059	0,051	0,082	0,107	
	C	450	0,055	0,063	0,050	0,072	0,095	
	d	420	0,080	0,082	0,080	0,110	0,160	
	е	480	0,065	0,067	0,064	0,098	0,120	
C	a	610	0,051	0,054	0,042	0,055	0,067	
	B	590	0,056	0,059	0,047	0,060	0,073	
	c	580	0,052	0,055	0,049	0,057	0,071	
	d	560	0,078	0,080	0,075	0,091	0,114	
	е	610	0,060	0,064	0,060	0,073	0,086	
A	8	1100	0,039	0,042	0,039	0,041	0,054	
	В	1090	0,045	0,046	0,042	0,040	0,060	
	c	1070	0,041	0,043	0,039	0,045	0,059	
	d	1050	0,056	0,058	0,049	0,059	0,074	
	е	1110	0,043	0,045	0,040	0,054	0,058	
В	a	1130	0,031	0,034	0,030	0,036	0,040	
	B	1060	0,033	0,036	0,035	0,041	0,063	
	c	1110	0,030	0,033	0,031	0,037	0,050	
	d	1050	0,046	0,049	0,041	0,051	0,067	
	e.	1110	0,034	0,030	0,025	0,030	0,052	
Ħ	8,	1250	0,027	0,028	0,026	0,034	0,040	
	В	1210	0,031	0,034	0,032	0,037	0,049	
	c	1230	0,025	0,028	0,026	0,034	0,045	
	d	1200	0,038	0,040	0,035	0,048	0,063	
	0	1250	0,026	0,027	0,030	0,031	0,050	

Литература

- 1. Ганус К. Архитектурная акустика. А., ГИЛ построительству, архитектуре и стройматериалам, Стройиздат, 1963.
 - 2. Осипов Г. Л. Пумы и эвукоизоляция. М., "Знание", 1967.
 - 3. Руководство по применению явлинских планов при пла-

нировании эксперимента с качественными факторами. Челябинск » Южно-Уральское кн. изд-во, 1971.

4. Солечник Н.Я. Производство древесноволокнистых илит. М., Гослесбуммадат, 1959.