Электронный архив УГЛТУ

УДК 674.815

В. Н. АНТАКОВА, А. С. АККЕРМАН М. Е. МЕЛЬНИКОВА, В. Н. ПЕТРИ (Уральский лесотехнический институт)

ОБЛИЦОВАННЫЕ ПЛИТЫ НА ОСНОВЕ РИСОВОЙ СОЛОМЫ

В настоящее время уделяется большое внимание расширению сырьевой базы для производства плитных материалов. Перспективным в этом отношении является одревесневшее растительное сырье и, в первую очередь, отходы сельскохозяйственного производства, которые используются крайне незначительно [1,5].

В проблемной лаборатории УЛТИ разработана технология получения необлицованных плитных материалов из дробленой рисовой соломы [2].

Известно [3], что из древесных частиц можно получить и декоративные пластики (ДЛУДП). Облицовка производится одновременно с их прессованием. Облицовочным материалом могут служить лущеный и строганый шпон, бумажно-смоляные пленки и пресс-порошки. Получение декорированных плитных материалов за одну операцию экономически эффективно. Использование летучих продуктов в процессе облицовки ЛУДП позволяет смягчить условия прессования, улучшить физико-механические и декоративные свойства плит.

Исходным сырьем для получения облицованных плит служит рисовая солома, поступившая из Краснодарского края. Солома подвергалась измельчению на дробилке ДКУ-М.

Фракционный состав дробленой рисовой соломы приведен ниже:

Размер ячеек сита, мм	5,0	4,0 3,	0 2,0	1,0	0,5	0,25
%	$\overline{4,0}$	$\overline{3,0}$ $\overline{2,}$	$\overline{0}$ $\overline{1,0}$	0,5	0,25	0
	2.5	3.0 10.0	0 11.0	35.0	24.0	14,0

Наиболее интересным облицовочным материалом для плит из рисовой соломы являются бумажно-смоляные пленки. Для облицовки использована пленка марки ММП. В качестве подслоя применялась бумага плотностью 130 г/м². Содержание смолы в пропитанной бумаге 50—55%. Содержание летучих 6—10%. В экспериментах использовалось два слоя пленки кремового, голубого и черного цвета, изготовленные на Бобровском изоляционном заводе. Облицовка плит из рисовой соломы производилась одновременно с их прессованием. Прессование производилось при давлении горячего прессования: 2,5; 5,0; 7,5 и 9,0 МПа. Для отыскания оптимальных условий изготовления облицованных плит при этих давлениях прессования применен метод неполного факторного планирования эксперимента типа 2^{3-1} [4]. Условия изготовления облицованных облицованния облицования облицования облицования эксперимента типа 2^{3-1} [4]. Условия изготовления облицованных плит при этих давления эксперимента типа 2^{3-1} [4]. Условия изготовления облицованных плит при этих давления эксперимента типа 2^{3-1} [4]. Условия изготовления облицованных плит при этих давления эксперимента типа 2^{3-1} [4]. Условия изготовления облицованных плит при этих давления облицованных плит при этих давления эксперимента типа 2^{3-1} [4]. Условия изготовления облицованных плит при этих давления облицованных плит при этих давления

Электронный архив УГЛТУ

Зависимость свойств облицованных плит из рисовой соломы от условий прессования

Условия прессования и свой-	Давление прессования, МПа					
ства плит	2,5	5,0	7,5	9,0		
Температура прессования, °C	160-165	160-165	160-165	155-160		
Влажность исходного сырья, %	22-20	13-15	9-11	9-11		
Продолжительность горя- чего прессования, мин/мм	1,6-1,5	1,5-1,6	1,2	1,4		
Содержание летучих в пленке, %	6-10	6-8	6-7	6-7		
Предел прочности при ста- тическом изгибе, МПа	25-28	38-43	47-48	48-49.		
Разбухание по толщине за 24 ч. %	25-30	26-33	30-44	29-35		
Водопоглощение за 24 ч, % Плотность, кг/м ³ Влажность плит, %	31-33 1150-1160 12-13	23-29 1280-1300 10-11	23-32 1330-1340 8-9	22-23 1350-1360 9-10		

ванных плит из рисовой соломы и показатели физико-механических свойств их приведены в таблице.

Плиты из рисовой соломы, облицованные бумажно-смоляной пленкой, можно получить с достаточно высокими техническими свойствами при давлениях прессования от 5,0 до 9,0 МПа и температуре 155—165°C.

Плиты, изготовленные при давлениях 7,5—9,0 МПа, не требуют кондиционирования. Более подробно исследовались свойства плит, полученных при давлении 9,0 МПа. Физико-механические свойства этих плит следующие:

Влажность плит, %	9,6;
Плотность, $\kappa \Gamma/M^3$	1348;
Водопоглощение за 24 ч, %	22,7;
Разбухание по толщине за 24 ч, %	32,6;
	47 C.
при статическом изгибе	47,6;
при сжатии перпендикулярно плоскости	
плиты	158;
при сжатии параллельно плоскости плиты	17;
при растяжении перпендикулярно плоско-	
сти плиты	0,4;
Твердость по Розенгаузу, МПа	112;
Ударная вязкость, Дж/м ² :	
перпендикулярно плоскости плиты	$13,0.10^3$;
параллельно плоскости плиты	$10,0.10^3$;
Модуль упругости при растяжении, МПа	$6,5\cdot10^3$;
Модуль упругости при сжатии, МПа	$5,8\cdot10^{3}$.

Электронный архив УГЛТУ

Результаты экспериментов позволяют сделать следующие выводы:

- 1. Показана возможность совмещения в одной технологической операции изготовления плитного материала из дробленой рисовой соломы с его облицовкой бумажно-смоляной пленкой.
- 2. Найдены оптимальные условия изготовления облицованного плитного материала при различных давлениях прессования.
- 3. Влажность пресс-материала и содержание летучих в облицовочной пленке зависят от давления прессования. Чем выше давление прессования, тем ниже показатели влажности и содержания летучих.
- 4. Увеличение давления прессования от 2,5 до 9,0 МПа приводит к значительному улучшению показателей прочности при статическом изгибе. Для получения облицованных плит рекомендуется давление 7,5—9,0 МПа, так как плиты, полученные при этих давлениях, не требуют кондиционирования.

В заключение можно сказать, что плиты из рисовой соломы, облицованные бумажно-смоляной пленкой, имеют красивый внешний вид и могут изготовляться большой гаммы цветов в зависимости от цвета пленки. Эти плиты могут быть рекомендованы в качестве декоративного отделочного материала.

ЛИТЕРАТУРА

Натальин Н. В. Рисоводство. — М., 1973.

2. Мельникова М. Е. Изыскание оптимальных режимов получения плитного материала из рисовой соломы без добавления связующих.— В сб.: Технология древесных плит и пластиков.— Свердловск, 1976, вып. 3. Повод Г. А. Изыскание и разработка методов облицовки и декориро-

вания лигноуглеводных древесных пластиков в процессе их изготовления. Автореферат. -- Свердловск, 1974.

4. Налимов В. В., Чернов Н. А. Статистические методы планирования экстремальных экспериментов.— М., 1965.

5. Плитные материалы и изделия из древесины и одревесневших растительных остатков без добавления связующих. Под ред. проф. В. Н. .Петри — М., 1976.

УДК 634.0.865

А. В. МЕЗЕНЦЕВ

(Хабаровский политехнический институт)

О ВОЗМОЖНОСТИ ПОЛУЧЕНИЯ ПЛИТНЫХ МАТЕРИАЛОВ ИЗ ОДРЕВЕСНЕВШИХ ОСТАТКОВ ОДНОЛЕТНИХ РАСТЕНИЙ БЕЗ ДОБАВЛЕНИЯ СВЯЗУЮЩИХ

Республики Средней Азии и ряд южных районов страны обладают незначительными лесосырьевыми ресурсами, поэтому каждый новый вид материала, изготовленного из местного сырья, спо-