- Шапиро А.Д. Производство строительных плит из волокна и древесных частиц. - М., 1959.
- Цыбульский Л.М., Минин А.Н. Влияние влажности наполнителя на свойства плит из отходов. - Механическая обработка древесины, 1970, № 14.
- 7. Von Ruth Tenker. Fur Qualität der in Spanplatten. Kleinanlagen zu verarbeitenden Schälspäne., - Holztechuclogil, 1966, 1 2, 81.
- 8. Von Ruth Zonker. Zur Qualität der in Spanplatten-Kleinanlagen zu verarbeitenden Schälspäne, - Holztechnologil, 1966, № 3, 201.

УДК 630.869 + 678.

Г.И.Попова, Г.К.Уткин, М.Д.Бабина, Г.В.Медведева, И.И.Перескокова, Л.А.Наумова, Т.Д.Горинова (Уральский лесотехнический институт им.Ленинского комсомола)

ВЛИЯНИЕ УДАЛЕНИЯ КОМПОНЕНТОВ ДРЕВЕСИНЫ И СТЕПЕНИ ПРЕДГИДРОЛИЗА НА СВОЙСТВА ПРЕСС-МАТЕРИАЛОВ ТИПА ФЕНОПЛАСТОВ

Наполнителем традиционных фенопластов является древесная мука, от качества которой в значительной степени зависят свойства получаемых на её основе пресс-порошков. В проблемной лаборатории УЛТИ в течение ряда лет ведутся работы по использованию опилок в качестве наполнителя пресс-порошков [1], [2] . Ранее было показано [2, 3, 4], что удаление водораство-

римых и легкогидроливуемых компонентов древесины благоприятно скавывается на ряде свойств получаемых пресс-материалов.

Представляет интерес проследить влияние последовательного удаления экстрагируемых и легкогидролизуемых веществ древесины на физико-механические свойства пресс-порошков.

Для исследования были ввяты древесные частицы сосны и беревы равмером менее 2 мм следующего химического состава (табл. 1).

Таблица 1 Химический состав древесины

Наименование компонентов	Химический со веса абсолютно	став в % от сухой древесины
	сосна	береза
Растворимые в горячей воде	3,18	1,59
Экстрагируемые спиртобенволом	5,03	1,95
Лигнин сернокислотный	25,46	21,43
Целлюлова по Кършнеру	44,64	43,67
Легкогидроливуемые полисаха- риды	17,33	29,87
Трудногидроливуемые полисаха- риды	46,57	45,72
Пентованы	10,48	22,14
Метоксильные группы	5,76	6,74
Уроновые кислоты	2,46	3,31
Зольность	0,36	0,53

Облагораживание древесины проведилось по стадиям, начиная с удаления водорастворимых веществ, затем — экстрагируемых спиртобенвольной смесью и кончая частичным и полным удалением легкогидроливуемых полисахаридов.

Выведение из состава древесины водорастворимых веществ, к которым относятся пектиновые вещества, танниды, красители,

минеральные вещества, проводилось в автоклаве емкостью 10 л с электрическим обогревом. Сырье (древесные опилки) вагру-жалось в эвтоклав, в котором предварительно нагревалась дистиплированная вода в количестве, соответствующем гидромоду-лю. Автоклав вакрывался крышкой, снабженной термометром. Сырье подогревалось до температуры 95-97 °С и подвергалось водной обработке в течение 3 ч. Затем содержимое переносилось на воронку Бюхнера и промывалось горячей дистиплированной водой. Целлолигнин (ЦЛ) подсушивался на воздухе при комнатной температуре до воздушно-сухого состояния.

Для удаления ие древесины смол, восков, масел, жирных и смоляных кислот была применена экстракция спиртобенеольной смесью в соотношении 1:2 по объему. Обработка спиртобенеольной смесью проводилась в аппарате Сокслета в течение 6 ч, модуль экстракции – 16, для обработки были использованы образцы древесины после водной экстракции. Следующей стадией облагораживания древесины было удаление легкогидроливуемых полисахаридов (ЛГ). Эта стадия проводилась в автоклаве той же емкости при гидромодуле 7, температуре 170 °C и различной продолжительности процесса. Так. для удаления 60 % ЛГ продолжительность была 50 мин, 80 % - 70 мин, 100 % - 90 мин. По истечении указанного времени нагревание прекращалось, производился сброс давления, и ЦЛ переносился на полотняный фильтр воронки Бюхнера, где промывался горячей дистиплированной водой до отрицательной реакции на кислоту.

Аналивируя данные табл. 2, можно проследить уменьшение выхода облагороженной древесины в зависимости от жесткости обработки. При полном удалении ЛГ полисахаридов выход ШТ составил 82,3 % (для сосны) и 79,8 % (для беревы). Содержание ЛГ полисахаридов в обравце древесины также уменьшается с жесткостью обработки, содержание же трудногидроливуемых (ТГ) полисахаридов и в том числе целлюловы практически остается постоянным.

Это повволило сделать предварительное предположение, что данный вид обработки не затрагивает целлюлозу. Однако при исследовании висковиметрическим методом молекулярно-массовое распределение (М.м.р.) целлюлоз сосны и берези, выделенных феноливом из исходных опилок и ЦЛ, полученного в

Таблица 2

Характеристика облагороженной древесины

обравца В н осны ки обензольной обработки бензольной обработки	19	ПОХНЯ			TOUR OB	
осны ки обензольной обработки бензольной обработки	7,36	облаго- роженной древеси- ны	ii .	H	EH.	целлю-
ки эбенаольной обработки бенаольной обработки	7,04	100,00	17,33	46,57	10,48	1
обенвольной обработки бензольной обработки	10	94,70	14,58	46,57	8,14	1
бензольной обработки	07.0	90,30	11,45	46,57	8,12	ı
		00	20.2	78 50	200	- 1
	144	00,10	2,0	46 34	2 2	1
TO WE IN VIGINERIA OF M. III	5.32	82,30	1.30	46.55	1 1	1
	00.4	100 00	23 87	45, 72	1	43.67
## PD	12	97.40	23.86	45.80	ı	43,70
После водной и спиртобензольной обработки 7,3	7,30	94,10	23,26	45,74	ï	43,68
-						
	6,31	92,00	9,55	45,62	ı	43,62
To me a ynametice 80 % JIT	7,30	80,10	4,93	45,60	1	43,61
То же и удаление 100 % ЛГ	41	79,80	1	45,70	1	43,60

Таблица 3

физико-механические показатели пресс-порошков

				Показатели	55	Te			
Наимено вануе наполнителя	ygenb- Haaf Haah Baa- Kocrage Klak/M	разру- шение напря- жения при стати- ческом изгибе,	BOAO- HOLE- JOUIG- HNE,	усдия,	reilio cron- koers	TEKY- HECTE HE WEHEE,	ygens- noe ofsen- noe onpo- rurae- nwe, Om.c.	удель- ное повер- жист, п ное электр. сопро- тивае- ние Ом.1012	SJEKT- KAZ HDO4- HDCTE, MB/W
Древесная мука (ГОСТ 5689-75)	0,9	0,07	55,0	0,4-0,80	150	110-190	0,10	1,0	13,0
Сосна							,		
Исходные опилки	6,1	82,1	65,0	0,46	183	120	2,25	20,8	14,3
После водной обработки	0,9	76,7	61,0	0,50	179	122	1,38	11,7	14,8
После водной и спирто- бензольной обработки	0,0	81,2	59,0	0,45	174	145	1,98	11,7	15,2
После водной и спирто- бенвольной обработки и	6,3	71,6	47,0	0,44	180	141	1,12	13,5	18,0
удаления 60,5% ЛГ То же и удаление 79% ЛГ	5,8	79.4	44,0	0,48	175	135	1,87	13,5	18,3
	5,5	67,3	28,0	0,56	159	141	1,07	4 0	16,7

Продолжение табл. 3

				No	Показатели				
Наименование наполнителя удель- ная удар- ная вяа- кость кдж/м	y gene- har y gap- har bra- koctè, k jim/	разру- шение напря- жения при стати- ческом магибе,	Водо пог лоше ние, мг	усалка.	Tenno- croh- kocrb,	Teky- uectb He MeHee,	ynenther hoe ochem- hoe ochem- hoe an. coupo- Tynen- hoe, Ox.cu	удель- эл ное рл повер- кс ное электр, и сопро- тивле- ние,	SIEKT- DMVEC- KSA ODOU- HOCTS, MB/M
Береза	ci ci	28 %	0 68	0.46	747	r.	80.8	800	17.7
исходные опилки	2,0	0.00	0,30	25.50	717	201		0600	
После водной обработки	7,1	86,3	61,0	0,52	168	143	6,81	27,0	16,3
После водной и спирто- бенвольной обрасотки	6,7	84,9	0,33	0,46	175	152	4,50	0.42	15,0
После водной и спирто- бензольной обработки и	6,9	84,3	47,0	0,49	182	145	3,18	13,5	19,7
удаления 60% ЛГ То же и удаление 80% ЛГ	5,8	67,5	43,0	0,46	168	103	1,18	11,0	17,0
То же и удаление 100% ЛГ	5,7	62,4	58,0	0,54	164	80	1,50	0,0	15,3

условиях 100-процентного удаления ЛГ, было показано, что в последнем образце происходит понижение высоты пиков на кривых М.м.р. и сдвиг в область меньших степеней полимеризации (СП).

На основе полученных образцов облагороженной древесины были приготовлены пресс-порошки суховальцевым способом на лабораторных вальцах Н-Тагильского завода пластмасс по следующей рецептуре (в в.ч):

-	облагороженная древесина	45,4	
-	фенолоформальдегидный олигомер	45,0	
-	уротропин	6,5	
-	окись кальция	0,9	
-	стеарин	0,7	
-	нигрозин	1,5	
	Испытания пресс-порошков проводились в ОТК I	НТЗП в	COOT-

Испытания пресс-порошков проводились в ОТК НТЗП в соответствии с требованиями ГОСТ 5689-73 на фенопласты (табл.3).

Из данных табл. З следует, что древесный наполнитель в виде опилок, подвергнутый водной обработке с удалением экстрактивных и легкогидролизуемых компонентов, дает возможность получить пресс-порошки с улучшением некоторых показателей (водостойкость, диэлектрические свойства, теплоемкость) при сохранении механических показателей практически на уровне ГОСТа. Однако это улучшение наблюдается до определенного предела, при удалении не более 80 % ЛГ; 100-процентное удаление ЛГ полисахаридов приводит к снижению физико-механических показателей, что подтверждается и результатами исследования М.м.р. внделенных целлюлоз.

Достаточно высокие показатели получены с использованием в качестве наполнителя опилок березовых. Таким образом в ревультате проведенного исследования показана возможность улучения ряда свойств пресс-порошков путем облагораживания древесного наполнителя методом водного предгидролиза.

ЛИТЕРАТУРА

1. А.с. 180333 [СССР]. Способ получения древеснофенолоформальдегидной прессовочной композиции./Красноселов Б.К.,

- Попова Г.И. Заявл. 06.09.63. (№ 855873/23-5). Опубл. 21.03.66. Открытия. Изобретения. Промышленные образцы. Товарн. знаки, 1966, № 7.
- 2. Красноселов Б.К., Попова Г.И., Бабина М.Д. Исследование процесса поликонденсации фенола и формальдегида в водной среде с участием древесины и получения пресо-порошков на основе продукта поликонденсации. В кн.: Труды УЛТИ. Свердловск, 1966, вып. 19.
- 3. Красноселов Б.К., Попова Г.И., Наумова Л.А. Исследование химических превращений лигнина древесины в условиях ее поликонденсации с фенолом и формальдегидом. Химия древесины, 1975. № 2.
- 4. Попова Г.И., Уткин Г.К., Бабина М.Д., Наумова Л.А., Медведева Г.В. К вопросу комплексного использования компонентов древесины с применением метода предгидролиза. В кн.: Тевисы докладов П Всесораной конференции по химии гемицеллюлов и их использования. Рига, 1978.

УЛК 634.086

Г.К.Уткин, Г.И.Попова, Е.И.Исаков, М.Д.Бабина, Г.В. Медведева, Л.А.Наумова, Н.А.Захарова, Н.И.Головатенко (Уральский лесотехнический институт им.Ленинского комсомола)

ИСПОЛЬЗОВАНИЕ МЕТОДА ПРЕДГИДРОЛИЗА ДЛЯ ОБЛА-ГОРАЖИВАНИЯ ДРЕВЕСНОГО НАПОЛНИТЕЛЯ

В проблемной лаборатории УЛТИ разработан способ получения пресс-порошков типа К-Д $\Phi\Phi$, основанный на совместной по-ликонденсации фенола и формальдегида в водной среде в присут-