На основании проведенных исследований можно сделать вывод, что кратковременная термическая обработка древесностружечных илит на основе фенолоформальдегидного связурщего является эффективным методом повышения атмосферостойкости плит.

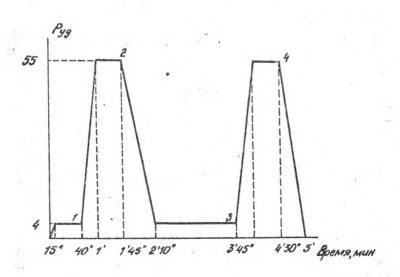
ЛИТЕР АТУРА

I. Эльберт А.А., Коврижных Л.П., Васильев В.В. Сравнительные исследования фенолоформальдегидных связурщих и древесностружечных плит на их основе. - Лесной курнал, 1978, № 3.

2. Reynolds W. F., Zinke W.P. The effect of aluminium and pH on sheet acidity. - "Pappi," 1963,
v. 46, N.F.
3. Shen K.C., Wrongham B. A rapid accelerated
aging test procedure for phenolic particleboards. "Forest Products Journal," 1971, v. 21, N 5.

YAR 674.817-41

А.А.Эльберт, О.В.Дорохова (Ленинградская лесотехническая академия)


ПРЕССОВАНИЕ ДРЕВЕСНОВОЛОКНИСТЫХ ПЛИТ ПОЛУСУХОГО
ФОРМОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ДОБАВОК РАЗЛИЧНЫХ ВЕЩЕСТВ

При полусухом способе производства древесноволокнистых плит водорастворимые продукты, образурщиеся при размоле и пропарке древесины, вместе с дефибраторной массой попадарт в пресс. Здесь под действием высокой температуры они претерпеват дальнейшие превращения с образованием карамельной массы на глянцевых листах и сетках [I]. Это, в конечном счете, обуславливает прилипание плит к одежде пресса. Эффект прилипания отсутствует при влажности 10... 15 % и растет с увеличением влажности ковра.

Данная работа направлена на использование добавок веществ, принимающих участие в превращениях водорастворимых продуктов в условиях прессования, с целью устранения эффекта прилипания плит.

Физико-механические свойства и прилипаемость плит во многом определяются режимом прессования [2]. При изготовлении плит с добавками различных веществ необходимо было правильно внорать режим прессования, при котором добавляемое вещество использовалось
бы максимально, обеспечивая снижение прилипания и необходимые
свойства плит.

Мы остановились на режиме, представленном на рисунке. Чтобы определить пригодность этого режима для прессования плит с добавками различных веществ, нами было определено изменение влажности ковра, количество водорастворимых продуктов и эффект прилипания плит по циклограмме в точках I — 4.

Циклограмма прессования древесноволокнистых плит (T = 190 °C)

Изготовление древесноволокнистых плит проводили из промышленного дефибраторного волокна древесины осины. Давление пара при пропарке 7 атмосфер, $\mathcal{T}_{\text{проп}} = \text{I,5} \dots 2$ мин, степень измельчения 400 ед. ВНИИдрева. Влажность после отбора 55 ... 66 %. Для формирования ковра волокно подсуживалось до влажности 30 и 55 %.

Количество веществ, экстрагируемых горячей водой, определяли по методике [3]. Эффект прилипания оценивали как отношение площади прилипшей поверхности ко всей площади плиты. Для определения влажности ковра в ходе прессования разгружали пресс в точках I - 4, волокно высушивалось до абсолотно сухого и по потере веса вычисляли влажность ковра. Плотность плит составляла 950 ... 1000 кг/м³, толщина-4 ... 4,5 мм.

Результати исследований приведени в табл. І.

Таблица I Эффект прилипания, содержание влаги и экстрактивных веществ в древесноволокнистом ковре на различных стадиях прессования

Номер стадии	Эффект прилипания при исходной влажнос-ти, %		Влажность ковра при исходной влаж- ности, %		Количество ве- ществ, экстра- гируемых горя-
	55	35	. 55	35	чей водой при влажности ковра 55 %
0	-	-	55	35	9,4
I	Не прилипает		34	29	6,6
2	c*= 50; r.st.**= 15	c = II	17	9	2,7
3	To me	To me	4	4	I,7
-4	н	.".	3	3	1,7
	о - сетка. г.л глянцев	и лист.	1	1	

Как видно из табл. I, эффект прилипания наблюдается на второй стадии. Прилипшие участки поверхности сохраняются до конца
прессования. При исходной влажности ковра 35 % наибольшая потеря
влаги наблюдается на второй стадии. При влажности 55 % потеря
влаги на первой стадии несколько больше, чем на второй. Однако
наибольшее уменьшение водорастворимых продуктов в обоих случаях
происходит на второй стадии. Таким образом, эффект прилипания вывывается, по-видимому, интенсивным выносом водорастворимых веществ
к поверхностям плит. Дальнейшее уменьшение водорастворимых веществ
от 2 к 4 стадии, вероятно, связано с участием их в образовании
межволоковных связей и переходом в нерастворимое состояние.

Полученные результать свидетельствуют о том, что исследованный режим прессования можно использовать при изготовлении плит с
нанесением химических реагентов на поверхность и с введением в
дефибраторную массу. Наличие первой стадии, где прилипания не наблюдается и потеря водорастворимых веществ небольшая, дает возможность добавляемому веществу как бы закрепиться на поверхности
и в древесноволокнистой массе, обеспечивая эффективное взаимодействие его с древесным комплексом и водорастворимыми продуктами.

Ранее при исследовании закономерностей карамелизации водорастворимых продуктов деструкции древесини нами было установлено, что на распад углеводов оказывает влияние металлы оборудования, катализируя окислительные процессы [4]. Существует мнение,
что окислительнур деструкцию углеводов в присутствии металлов
тормозят соединения фосфора [5], которые "блокирурт" металл посредством включения его в комплексные соединения [6]. На окислительно-восстановительные реакции, протекающие по радикальному
механизму, оказывают влияние такие соединения, как сернокислый
магний, сульфид натрия, фенолы [7]. Фосфаты, а также соединения
фенольного характера используют при изготовлении древесноволокнистых плит. Как известно [8], древесноволокнистные плиты, содержащие фосфор, обладают огнестойкостью. Применение резорцина
ведет к повышению прочности и биостойкости плит [9].

Мы попытались использовать вышеприведенные соединения для улучшения качества поверхности плит, изготовленных из волокна влажностью выше 30 %. Результаты исследований приведены в табл. 2.

Таблица 2

Результаты определения эффекта прилипания и физико-механических свойств плит, изготовленных с добавлением ингибиторов окислительных процессов

Both of a past and agreed agreed and a strong				
Ридиеопмо В	Эффект при- липания, %	6 Mar.	Набухание, %	Водопогло- щение, %
I	2	3	4	5
Волокно W = 30 %	c = II	18,0	16	17
Волокно W = 55 %	c = 50; г.л. = I5	17,0	15	18
Волокно (W = 50%) 90%	c = 10; по краям г.л.	end)	-	100
20 % p-p Mg SO ₄ (на поверх- ность) IO %				
Волокно (W = 50%) 90 % Ма SO ₄ (сухой в мас-	с = 25; г.л. = II	6-90	***	en .
су) IO % Волокно (W = 30%) 95 %	c = 25; г.л. = IO	GAB .	ОФ	ull und
50% водный р-р резорцина 5%				
Волокно (W = 30%) 93 % Na ₂ S (сухой в мас- су) 7 %	c = II		-	560

Продолжение табл. 2

I	2	3	4	5
Волокно (W = 50 %) 95 % Са(H ₂ PO ₄) ₂ (в массу) 5 %	Не прили- пает	18,0	9	12
Волокно (W = 30 %) 95 % Ca(H ₂ PO ₄) ₂ (в массу) 5 %	To me	22,0	9	14
Волокно (W = 30 %) 93 % CaCO ₃ (в мас- су) 7 %	"	22,0	15	19
Волокно (W = 50 %) 95 % NH ₄ H ₂ PO ₄ (в массу) 5 %	"	27,4	13	17
Волокно (W = 30 %) 93 % NH ₄ H ₂ PO ₄ (в массу) 7 %	11	26,8	13	13

Как видно из табл. 2, сернокислый магний, резорцин и сульфид натрия не способствуют снижению прилипаемости плит. Значительный эффект от использования резорцина и сульфида натрия вероятнее всего будет наблюдаться при введении их в камеру дефибратора, так как протекание радикальных реакций наиболее благоприятно именно в этих условиях.

Соли кальция и аммония вследствие незначительной растворимости в воде вводились в древесноволокнистую массу в сухом виде.

При этом прилипания плит к глянцевны листам и сетке не наблюдалось. Показатели свойств древесноволокнистых плит несколько выше, чем у контрольных плит. Перечисленные выше соединения доступны и имеют относительно небольшую стоимость. Работы в этом направлении следует продолжить.

Выводы

Проведен подбор режима для прессования древесноволокнистого ковра полусухого формования с добавками различных веществ. Использование фосфатов кальция и аммония, а также углекислого кальция позволило полностых устранить эффект прилипания плит к глянцевым листам и сетке при прессовании древесноволокнистого ковра влажностью 30...50%.

JIMTEPATY PA

- 1. Свидерский D. Производство древесноволокнистых плит полусуким способом. В км.: Химическая переработка древесымы. М., 1962 (Научно-техн. сб., вып. 2).
- 2. Шишкина А.П. Теоретическое обоснование и изучение факторов полусухого формирования. - Л., 1963 (Труды ЛТА).
- 3.0 боленская А.В. Практические расоты по жимии древесины и педлимозы. М., 1965.
- 4. Эльберт А.А., Шишкина А.П., Дорохова О.В. Исследование карамелизации углеводов в условиях производства древесноводокнистых плит. В ки.: Технология древесных плит и пластиков. Свердловск, 1980 (Межвуз. сб., вып. УП).
- 5. Малков А.М. Еще раз об окислительном разрушении сахаров при гидролизе полисахаридов древесных опилок. - Гидролизная и лесохимическая промышленность, 1957, № 6.
- 6. Побединский Д.Г., Кирпичников П.А. Усиление эффективности органических фосфитов как ингибиторов окисления твердо-

го полипропилена ионами переходных металлов. - Высокомолекулярные соединения, 1977, т. (A) XIX, № 2.

- 7. Акежев М.А., Аким Г.Л. Влияние стабилизирующих добавок при кислородно-шелочной обработке бисульфитной целлюлозы. В ВНИПИЭИлеспром. Целлилоза, бумага и картон, 1976, № 22.
- 8. Леонович А.А. Теория и практика изготовления огнезащищенных древесноволокнистых плит. - Л., 1978.
- 9. А.с. 656869 [СССР]. Способ изготовления мягких биостойких древесноволокнистых плит. /Н.А.Громова, В.Н.Закатин, Н.Я. Солечник. — Опубл. в Б.И., 1979, № 14.

УДК 674.815

А.А.Леонович, D.В.Николаева (Ленинградская лесотехническая академия) М.С.Виноградов (Ленинградский технологический институт)

ВЛИЯНИЕ ВСПЕНИВАЮЩИГОСН СВЯЗУЮЩЕГО НА ПРОЦЕСС ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ ОГНЕЗАЩИЩЕННЫХ ДРЕВЕС-НОВОЛОКНИСТЫХ ПЛИТ

Фосфорсодержащие антипирены существенно влияют на процесс термического разложения древесноволокнистых плит [1]. Влияние других компонентов, входящих в рецептуру древесноволокнистых плит, практически не изучалось, тогда как известно, что даже вола, содержащаяся в цемполозе, снижает температуру начала её термораспада на несколько десятков градусов [2]. В настоящей