тектронный архив УГЛТ

КС-68М+гидролизный лигнин (1:1)

KC-68M

Время отверждения композиции, с, при температуре термообработки, °С 200...210 150...160 2520 375 190 170 120 180

Вывод о причинах снижения времени отверждения композиции сделать трудно, так как остатки серной кислоты, содержащиеся в гидролизном лигнине, могут служить причиной снижения времени отверждения композиции.

Выводы

- 1. Проведено изучение взаимодействия гидролизного лигнина с карбамидной смолой.
- 2. Показано, что гидролизный лигнин взаимодействует с карбамидной смолой с образованием малоустойчивых связей.
- 3. Для получения более устойчивых связей необходимо разработать экономически целесообразные методы модификации смолы или гидролизного лигнина.

ЛИТЕРАТУРА

- 1. А. с. 590310 [СССР]. Сырьевая смесь для приготовления теплоизоляционных изделий/В. М. Наумович, А. Г. Ефремов, В. Н. Каплун и др. — Опубл. в. Е. И., 1978, № 4.
- 2. Получение лигноволокнистых плит/Сухановский С. И., Журавлева Р. М., Чудаков М. И., Яковенко А. З.: Труды ВНИИГС. — Л., 1956, т. V.
- 3. Чудаков М. И. Промышленное использование лигнина.— М., 1972. 4. Доронин Ю. Г., Свиткина М. М., Мирошниченко С. Н. Синтетические смолы в деревообработке. — Л., 1979.
- 5. Тиме Н. С. Теоретические исследования и технология получения ДВП сухого способа с использованием связующих на основе мочевиноформальдегидных олигомеров: Дис. на соиск. учен. степени канд. техн. наук. — Л., 1975 (Ленинградская лесотехническая академия).
 - 6. Уэндландт У. Термические методы анализа.— М., 1978.
- 7. Злочевская Р. И., Злочевский С. И., Куприна Т. А. Исследование термической дегидратации катиои-замещенных образцов ментморановой глины.— В ки.: Связанная вода в дисперсных системах.— М., 1975. (Межвуз. сб., вып. 2).

УДК 674.047.001.5

В. Н. ЗАКАТИН (ПМО «Невская Дубровка») Н. В. ЛИПЦЕВ (Ленинградокая лесотехническая академия им. С. М. Кирова)

О ВЛИЯНИИ ПАРАМЕТРОВ СУШКИ НА ВОДОПОГЛОЩЕНИЕ МЯГКИХ ДРЕВЕСНОВОЛОКНИСТЫХ ПЛИТ С РЕЗОРЦИНОМ

В предыдущих сообщениях [1, 2] были изложены результаты исследований влияния добавок резорцина на физико-механические показатели мягких древесноволокнистых плит. Было установлено [1], что введение резорцина в пропарочную камеру дефибратора в количестве $0,3\dots 1\%$ от массы абс. сухого волокна снижает водопоглощение плит до требуемых значений. Основными параметрами технологического процесса, которые влияют на водопоглощение мягких плит с резорцином, являются температура сушки и влажность плит в момент окончания процесса сушки. Она должна быть не более 2%.

Целью выполненной работы являлось дальнейшее изучение характера процесса сушки мягких плит с резорцином и установ-

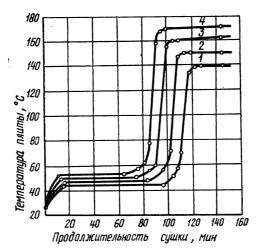


Рис. 1. Изменение температуры в центре мягких плит в процессе их сушки при температуре сушильного агента, $^{\circ}$ C: $_{1}-140;\ _{2}-150;\ _{3}-160;\ _{4}-170$

ление температурно-временной эквивалентности процесса сушки.

Для проведения исследований отобрали массу, выработанную в цехе ДВП производственного мебельного объединения «Невская Дубровка» без проклейки. Масса изготовлена из сырья с преимущественным содержанием лиственных пород и градусом помола 26 ДС. Навеску массы разбавляли водой до концентрации 1,5%, вводили резорцин в количестве 1% от массы волокна и после перемешивания в течение 90 мин изготовляли образцы мягких древесноволокнистых плит толщиной 13 мм с относительной влажностью 80%. В середину каждого образца вводили датчик самопишущего потенциометра КСП-4 и затем высушивали в польской лабораторной закалочной камере при температурах 140, 150, 160 и 170 °С. Потенциометр автоматически фиксировал изменение температуры внутри плиты в процессе ее сушки. Результаты измерений показаны на рис. 1.

Электронный архив УГЛТУ Из представленных данных видно, что температура внутри плиты изменяется неравномерно. График изменения температуры можно разбить на четыре периода:

1-й период — прогрев и подъем температуры внутри плиты до температуры мокрого термометра;

2-й период — сушка при данной температуре;

3-й период — подъем температуры внутри плиты до значения температуры сушильного агента;

4-й период — термообработка плит при данной температуре.

Из литературных данных известно, что влага в плите содержится как в свободном, так и в связанном состоянии [3]. Процесс иопарения свободной влаги заканчивается к концу третьего периода сушки, так как пока внутри плиты сохраняется свободная влага, ее температура не может подняться до температуры сушильного агента [3]. В четвертом перподе сушки происходит удаление связанной влаги.

Сравнивая характер изменения полученных кривых с вариантами температурных кривых при высокотемпературной сушке древесины, полученных П. С. Серговским [3], можно сделать вывод, что процесс сушки мягких плит подобен квазивысокотемпературному процессу. Следовательно, для расчета общей продолжительности сушки мягких плит можно пользоваться известными уравнениями [3].

Общая продолжительность сушки мягких плит выражается уравнением

$$\tau_{\text{общ}} = \tau_1 + \tau_2 + \tau_3 + \tau_4,$$

где τ_1 — время прогрева плиты до температуры мокрого термометра, мин;

τ2 — время сушки плиты при температуре мокрого термометра, мин;

тз — время подъема температуры внутри плиты до температуры сушильного агента, мин;

т4 — продолжительность термообработки плит при данной температуре до конечной влажности 2%, мин.

Поскольку термообработка плит в четвертом периоде сушки происходит при постоянной температуре внутри плиты, расчет ее продолжительности можно производить так же, как и для второго периода сушки. Подставляя формулы для расчета продолжительности сушки в каждом периоде в общую формулу, лучим

$$\begin{aligned} \tau_{\text{cofiu}} &= \tau_1 + \frac{S_{\text{p}}\rho_{\text{yc,r}}r_0A_{\text{u}}}{4320(t_{\text{c}} - t_{\text{K}})} \left(\frac{1}{\alpha} + \frac{S_{\text{p}}}{400} \right) \left[(W_{\text{nau}} - 30) \ 0.9 + \\ &+ (30 - W_{\text{y}}) \ 2.3 \ \text{lg} \ \frac{30 - W_{\text{y}}}{W_3 - W_{\text{y}}} + (W_3 - 2) \right], \end{aligned}$$

где $\tau_{\text{обш}}$ — общая продолжительность сушки мягких плит до конечной влажности 2%, мин;

 S_p — расчетная толщина плиты, м [3].

$$S_{\rm p} = \frac{S_1 S_2}{V S_1^2 + S_2^2},$$

где S_1 — толщина плиты, м;

 S_2 — ширина плиты, м;

 $\rho_{yc,\tau}$ — условная плотность плиты, кг/м³;

 r_0 — скрытая теплота парообразования, 2,25 · 106 Дж/кг;

 A_{π} — коэффициент, учитывающий характер циркуляции воздуха. При реверсивной циркуляции — 1,0; при нереверсивной — 1,15;

 $t_{\rm c}$ — температура сушильного агента, °С;

 $t_{\rm K} = 100^{\circ} \, {\rm C}$ — температура кипения воды;

 $W_{\text{нач}}$ — начальная влажность плит, %;

 α — коэффициент теплообмена, $B\tau/(M^2 \cdot rpaд)$;

 λ — коэффициент теплопроводности в поверхностной зоне, $B\tau/(M\cdot \Gamma pag)$ [4].

$$\lambda = \left(\frac{\rho^2}{111 \cdot 10^5} + 0.062\right) [1 + 0.0018 (t - 25)],$$

где ρ — плотность влажной плиты, кг/м³;

t — температура плиты, °C;

 W_y — устойчивая влажность плит при данной температуре сушки, %. При камерной сушке устойчивая влажность идентична равновесной [3];

 W_3 — влажность плит в конце третьего периода сушки, %.

Подставив экспериментальные данные в полученное выражение, можно рассчитать общую продолжительность процесса сушки мягких плит при различной температуре до влажности 2%. Результаты расчетов приведены в таблице.

Температура, °С	т 1, мин	т ₂ , мин	т _а , мин	τ ₄ , Milli	W ₃, %	α, Вт/(м²-град)	w _{рав} , *	т _{общ} ,
140 150 .160 170	16 15 14 13	79 70 61 52	26 27 28 29	25 18 13	18,4 17,0 15,2 13,0	18,1 16,3 15,6 15,7	2,3 1,5 1,0 0,5	137 121 107

^{*} Значения взяты из данных П. С. Серговского [3].

Из расчетных данных следует, что с увеличением температуры сушки от 140 до 170 °C время прогрева плит до температуры мокрого термометра снижается от 16 до 13 мин. Влажность плит в конце третьего периода сушки снижается от 18,4 до 13,0%. Время термообработки плит в четвертом периоде уменьшается от 25 мин при 150 °C до 13 мин при 170 °C. Общая продолжительность сушки плит до влажности 2% уменьшается от 137 мин

ЭЛЕКТВОННЫЙ АРХИВ УГЛТУ при температуре 150 °С до 107 мин при 170 °С. При температуре 140 °С высушить плиты до абсолютной влажности 2% практически невозможно, так как равновесная влажность при данной температуре составляет 2,3%.

Температура внутри плиты во втором периоде сушки имеет близкие по величине значения независимо от температуры сушильного агента. Но расчеты затрат тепловой энергии [5] на сушку мягких плит во втором периоде показали, что при температуре сушильного агента 170 °C на сушку затрачивается 8870, а при температуре 140 °C—7990 кДж/кг волокна. При температуре 170 °C затраты тепловой энергии на сушку мягких плит во

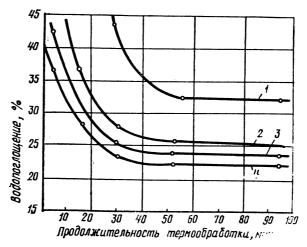


Рис. 2. Зависимость водопоглощения мягких плит от продолжительности их сушки в четвертом периоде при температуре, ° C: I-140; 2-150; 3-160; 4-170

втором периоде меньше, чем при температуре 140 °С, так как испарение свободной влаги происходит более интенсивно. Коэффициент скорости сушки при температуре 140 °С составляет 0,031, а при температуре 170 °С—0,048 кг/с влаги на килограмм абс. сухого волокна. Следовательно, для интенсификации процесса сушки выгоднее сушку мягких древесноволокнистых плит проводить при более высокой температуре. Далее необходимо было установить изменение водопоглощения плит в процессе их сушки. Для этого образцы мягких плит с резорцином подвергали сушке при вышеуказанных температурах различной продолжительности и отбирали в четвертом периоде, начиная с начального момента, через различные промежутки времени. Водопоглощение высушенных образцов определяли по ГОСТ 19592—74. Результаты испытания образцов показаны на рис. 2.

33

.Из полученных данных видно, что с увеличением продолжительности сушки водопоглощение мягких плит снижается и достигает близкого к минимальному значения через 50 мин от начала четвертого периода сушки. Дальнейшая сушка плит не вызывает значительного снижения их водопоглощения.

Мягкие плиты с требуемой водостойкостью получаются после их сушки в четвертом периоде продолжительностью не менее 24 мин при температуре 150 °C, 16 мин при 160 °C и 12 мин при

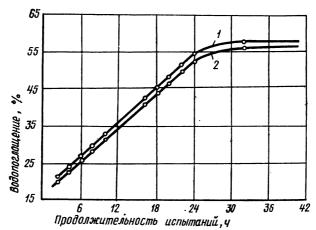


Рис. 3. Влияние продолжительности испытаний на водопоглощение мягких плит:

1 — с резорцином; 2 — с парафиновой эмульсией

170 °C. Водопоглощение мягких плит с резорцином при сушке их при температуре 140 °C требуемых значений не достигает.

Для сравнения водостойкости мягких плит, полученных из массы, проклеенной парафиновой эмульсией, и массы с добавкой 1% резорцина, изготовили образцы плит и высущили при температуре 160 °C. После кондиционирования образцы выдерживали в воде и определяли их водопоглощение за различные промежутки времени. Результаты определения представлены

Из приведенных данных видно, что с увеличением продолжительности испытаний водопоглощение тех и других плит пропорционально возрастает. Они сохраняют требуемую водостойкость после испытаний в течение 8 ч. Затем с увеличением продолжительности испытаний их водопоглощение увеличивается 57...58% и при дальнейшем выдерживании в воде повышается незначительно. Таким образом, плиты, изготовленные с добавкой 1% резорцина к массе волокна, приобретают примерно такую же водостойкость, как и плиты, проклеенные парафиновой эмульсией.

Электронный архив УГЛТУ

- 1. Процесс сушки мягких древесноволокнистых плит идентичен квазивысокотемпературному. Выведенное уравнение позволяет рассчитать продолжительность процесса сушки как в целом, так и по каждой стадии в отдельности.
- 2. Для получения мягких плит с добавкой 1% резорцина к массе волокна требуемой водостойкости их сушку необходимопроводить при температуре не ниже 150 °C. Продолжительность четвертого периода сушки должна быть не менее 24 мин при температуре 150 °C, 16 мин при 160 °C и 12 мин при 170 °C.
- 3. Мягкие древесноволокнистые плиты с добавкой 1% резорцина к массе волокна приобретают при вышеуказанном режиме сушки такую же водостойкость, как и плиты, проклеенные парафиновой эмульсией.

ЛИТЕРАТУРА

1. Закатин В. Н., Липцев Н. В., Солечник Н. Я. Мягкие древесноволок-

нистые плиты с резорцином.— Плиты и фанера, 1978, № 11. 2. А. с. 656869 [СССР]. Способ изготовления мягких биостойких древесноволокнистых плит/В. Н. Закатин, Н. В. Липцев, Н. Я. Солечник, Н. А. Громова.— Опубл. в Б. И.. 1979, № 14. 3. Серговский П. С. Гидротермическая обработка и консервирование дре-

весины.— М., 1975.

4. Обливин А. Н., Воскресенский А. К., Семенов Ю. П. Тепло- и массоперенос в производстве древесностружечных плит.— М., 1978.

Справочник химика.— М.; Л., 1968, т. 5.

УДК 674.817-41

Н. В. ЛИПЦЕВ, В. И. МИХАСЕНКО, В. С. ЧИРКОВА (Ленинпрадская лесотехническая академия им. С. М. Кирова)

АНАЛИЗ ВЗАИМОСВЯЗИ ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК РАЗМАЛЫВАЮЩЕЙ ГАРНИТУРЫ С ПАРАМЕТРОМ ФРАКЦИОННОГО РАСПРЕДЕЛЕНИЯ ДРЕВЕСНОВОЛОКНИСТОЙ МАССЫ

В работе [1] введен параметр измельчения т, позволяющий связать степень измельчения древесноволокнистой массы (ДВМ) с вязкоупругими характеристиками измельчаемой древесины и техническими характеристиками размалывающего оборудования.

Параметр m определяется как отношение коэффициента k, зависящего от реологических свойств измельчаемой древесины, и конструктивных параметров оборудования (в частности, площади размола дисков) к коэффициенту b, характеризующему технологические условия проведения процесса измельчения (в частности, продолжительность измельчения и зазор между дисками).

$$m = \sqrt{\frac{k}{b}}.$$
 (1)

3*