УДК 678.632

П.П.Третьяк, Л.В.Майбурова (Уральский лесотехнический институт)

ПОВЫШЕНИЕ ТЕКУЧЕСТИ ДРЕВЕСНЫХ ПРЕССОВОЧНЫХ МАСС НА ОСНОВЕ СОВМЕЩЕННОГО ФЕНОЛОФОРМАЛЬДЕГИДНОГО СВЯЗУЮЩЕГО

Одним из путей снижения содержания фенолоформальдегидных олигомеров в МДП является производство их на основе совмещенного
фенолоформальдегидного связующего — новолачного порошкообразного
олигомера и фенолоспиртов [1,2]. Несмотря на достаточно высокие
физико-механические свойства, пресс-материал обладает пониженной
текучестью, что загрудняет переработку его в изделия сложной конфигурации.

При проведении данной работы ставилась цель получить МДП на основе совмещенного фенолоформальдегидного связующего с теку-честью, удовлетворяющей требованиям ГОСТ II 368-79 для МДПО-В, без существенного снижения физико-механических свойств пресс-композиции и увеличения в ней содержания фенолоформальдегидного связу-вшего.

В работе использовались но волачный фенолоформальдегидный олигомер марки СФ-ОІЭ в порошкообразном виде и фенолоспирты марки А с содержанием сухого остатка 49,5%. Соотношение но волака и резола в совмещенном связующем составляло І:І по абсолютно сухой массе компонентов. Количество совмещенного фенолоформальдегидного связующего в МДП было постоянным и составляло І5%. В качестве смазки использовалась олеиновая кислота в количестве І%. В качестве стве наполнителя применялись древесные опилки лиственных и хвойных пород влажностью до 7% следующего фракционного состава, мас. %: фракция более ІО мм — 2, І; от ІО до 5 — 6, 3; от 5 до 2 — 29, 5; от 2 до І — 8, 4; от І до 0, 5 — 26, 2; меньше 0, 5 мм — 21, 5.

Процесс получения МДП на основе совмещенного фенолоформальдегидного связующего проводился по ранее описанной методике [2].

Для выбора компонента, повышающего текучесть МДП, на основе литературных данных были взяты различные как органические, так и неорганические вещества, пластифицирующие связующее или древесину, а также снижающие коэффициент трения, которые вводились в композицию в количестве от I до 5%. Текучесть пресс-массы определялась по приведенному диаметру образца по ГОСГ 11368-79. Результаты исследований приведены в табл. I.

Таблица I Влияние вводимых компонентов на текучесть МДП

Вводимые добавки	Содержание компонента, мас. %	!Текучесть (по при- !веденному диамет- !ру), мм
Тальк	I	67
Тальк	5	69
Графит	5	83
Едкий натр	5	63
Едкий натр	3	82
Гидроокись аммиака	5	80
Гидроокись аммиака	2	80
Полиэтиленполиамин	5	70
Олеиновая кислота	5	80
Мочевина	5	100
Поли винилхлорид	5	90
Кубовый остаток полипропилена	5	I05
Исходная прэсс-масса	-	62

Как следует из табл. I, модирицирующими компонентами, значительно повышающими текучесть МДП, являются мочевина, поливинилхлорид и кубовый остаток полипропилена, которые являются доступными и сравнительно дешевыми. Результаты исследований показали, что повышенная текучесть МДП достигается при введении мочевины в виде водного раствора или раствора в фенолоспиртах. Последнее предпочтительней, так как в композицию не вводится дополнительная влага, для удаления которой требовалась бы дополнительная сушка пресс-массы.

Оптимизация МДП с введением в нее мочевины проводилась с использо ванием математического метода планирования эксперимента [3].

В качестве параметров оптимизации композиции выбраны основные физико-механические и технологические свойства - разрушающее напряжение при изгибе, водопоглощение и текучесть. Уровни варьирования факторов приведены в табл. 2.

Основной уровень по содержанию совмещенного связующего принят на основе результатов предыдущих исследовании МДП-2, а мочевины - на основе вышеприведенных исследований.

В качестве откликов, как было указано выше, были приняты: $y_{_{\rm T}}$ - текучесть МДП (по приведенному диаметру), мм;

			Таблица	6
сло вия	планиро вания	эксперимента		

Уровни факторов	! Кол !-	Факторы		
	1	XI	1 X2	
Основной уровень	.0	I 5	5	
Единицы варьирования	-	5	4	
Верхний уровень	+I	20	9	
Нижний уровень	-I ·	IO	I	

Примечание. Содержание в МДП, %: совмещенного связующего (X_T) и мочевины (X_2) .

У2 - водопоглощение пресс-изделий в холодной воде за 24 ч. %; У - разрушающее напряжение при изгибе, МПа.

Матрица планирования эксперимента и полученные данные приведены в табл. 3.

Таблица 3 Матрица планирования и результаты экспериментов

Факторы			Отклики			
XI		X ₂		y _I ;	y ₂	y ₃
код	!натур.	!код	!натур.!			
-I	10	-I	I	78, 35	13,05	58, 13
-0	15	-I	I	85,05	12,83	60,36
+ I	20	-I	I	94,20	2,26	65,86
-I	IO	0	5	80,78	24,26	52,40
0	15	0	5	91,20	8, 10	67,26
+I	.20	0	5	100,85	2,40	69,86
-I	10	+ I	9	86,10	26, 13	59,30
0	15	+1	9	91,65	II,O	65,76
+ I	20	+I	9	91,18.	8,2	68,20

Проведение дисперсионного и регрессионного анализов показало, что зависимость параметров оптимизации от варьируемых факторов может быть выражена следующими уравнениями:

$$y_1 = 91,44 + 6,85 X_1 + 1,88 X_2 - 3,19 X_2^2;$$

$$y_2 = 10, 3 - 6, 31 X_1 + 2, 24 X_2 + 3, 5 X_1 X_2;$$

 $y_3 = 65, 62 + 5, 1X_1 + 2, 4 X_2 - 2, 6 X_2^2 - 1, 7 X_2^2.$

На основании математической модели было показано, что текучесть МДП возрастает как с увеличением содержания совмещенного

фенолоформальдегидного связующего, так и мочевины (до 6%). Водопоглощение пресс-изделий увеличивается при уменьшении количества связующего и повышении содержания мочевины. Разрушающее напряжение при изгибе пресс-изделий также возрастает. Мочевина в
условиях прессования МДП — при температуре I55+5°C, давлении
35 МПа и выдержке I мин/мм — может разлагаться с образованием
циановой кислоты, которая в дальнейшем может реагировать с гидроксильными группами компонентов древесины с образованием карбаминовых эфиров, пластифицирующих древесную прессовочную массу.

В результате проведенных исследований количество мочевины в пресс-массе было выбрано 5, а содержание совмещенного фенолоформальдегидного связующего - 15% (МДП-I).

Аналогично вышеприведенным исследованиям произведен выбор МДП повышенной текучести, содержащей комбинированные добавки — мочевину и поливинилхлорид в соотношении I:I в количестве IO мас. % (МДП-2), а также мочевину и кубовый остаток производства полипропилена в соотношении 5:3 в количестве 8 мас. % (МДП-3). В работе использовалоя суспензионный поливинилхлорид. Кубовый остаток — отход производства полипропилена — представляет собой вазелинобразную массу и в производстве МДП применяется в виде 20-процентной водной эмульсии. Так как кубовый остаток является и смазывающим веществом, олеиновая кислога в МДП-3 не вводилась.

Физико-механические овойства МДП представлены ниже.

	МДП-І	мдп-2	МДП-3	МДПО-В (ГОСР II 368- 79)
Плотность, кг/м3	1320	1320	1320	13001380 .
Разрушающее напряжение при изгибе, МПа	67	78	73	49
Ударная вязкость, кДж/м2	6	9	IO .	4
Водопоглощение за 24 ч, %	. 8	4,5	5, I	6
Текучесть (по приведенном диамегру), мм	y 105	106	II5	105

В исследуемых пресс-массах содержание совмещенного феноло-формальдегидного связующего составляло 15 мас. %. Физико-механи-ческие свойства пресс-масс повышенной текучести, кроме водостой-кости МДП-1, удовлетворяют требованиям ГОСТ 11368-79. Следовательно, такие композиции МДП могут быть использованы для производства деталей сложной конфигурации.

Увеличение текучести при низком содержании фенолоформальдегидного связующего может быть доэтигнуго для МДП введением в

композицию мочевины, а также комбинированных добавок - мочевины и поливинилхлорида, мочевины и кубового остатка полипропилена.

Литература

- А.с. 1065449 СССР. МКИ С 08 4 97/02. Древесная просс-композиция /П.П.Третьяк, И.И.Алексеев, Р.Н.Подшивалов (СССР)//От-крытия. Изобретения. 1984. № 1. С.III.
- 2. Масса древесная прессовочная на основе отходов деревообративающего цеха Уралмашзавода/Третьяк П.П., Дедюхин В.Г., Вторыгин А.М., Устюгов А.Б.-Технология древесных плит и пластиков. - Свердловск, 1982 (Межеуз.сб., вып. IX).
- 3. Адлер Ю.П., Марков Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М., 1976.

YAK 674.815-41

В.Г.Дедюхин, Е.В.Ђиндюко ва, Н.В.Чукин, Л.В.Майбуро ва

(Уральский лесотехнический институт)

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДАВЛЕНИЯ ПРЕССОВАНИЯ НА СВОЙСТВА ДСП

Как известно из литературных данных, давление прессования является основным технологическим параметром, определяющим плотность древесностружечных плит. В свою очередь плотность плит определяет все другие физико-механические показатели.

Исследо вания про водились с целью определения изменения свойств ДСП в условиях производства ДОЗа в зависимости от давления прессования и определить давление, обеспечивающее получение плит с физико-механическими свойствами, удовлетворяющими требованиям ГОСТ ТО6 32-77.

Перед заводом поставлена задача получить плиты марки Π -3 для полов с использованием для их производства, в основном; отходов деревообрабатывающих цехов. В качестве связующего используется смола марки КР-МГ, в качестве гидрофобизатора — расплавленный парафин.Плиты изготавливаются на польской линии фирмы "Прозомак" в двухпролетном прессе марки pH-2 R_W — 4000 усилием 40000 кН (4000 тс). Размеры плит после обрезки — 5620×2250 мм, толщина — 20 мм (без шлифования). Прессование бесподдонное с использованием дистанционных прокладок.