6. Беллами А. Спектры сложных молекул, М. 1963.590с.

УДК 674.815-41 : 630.824.834

И.А.Гамова, Е.А.Нагибина, Н.С.Тиме (Ленинградская лесотехническая академия)

ИЗУЧЕНИЕ ТЕРМОГИДРОЛИТИЧЕСКОЙ УСТОЙЧИВОСТИ МОДИФИЦИРОВАННОЙ КАРБАМИДОФОРМАЛЬДЕГИДНОЙ СМОЛЫ

В настоящем сообщении представлены результаты исследований физико-химических свойств карбамидоформальдегидного опигомера, модифицированного продуктами начальной конден сации фенола и формальдегида.

Ранее было показано, что применение композиционных связующих, получаемых совмещением карбамидных и фенольных олигомеров, обеспечивает клеевое соединение повышенной водо- и термостойкости [1, 2]. Можно ожидать, что таксе связующее будет более устойчивым к термогидролитическим воздействиям, в результате которых происходят разрушение карбамидоформальдегидного олигомера (КФО) и выделение формальдегида, определяющего токсичность древесно-стружечных плит (ДСтП).

Изучали свойства композиционного связующего, состоящего из карбамидоформальдегидного олигомера марки КФ-МТ и начальных продуктов конденсации фенольной смолы – фенолоспиртов марки Б (ФС).

Для приготовления изучаемых смесей приводили карбамидпую смолу к 50-процентной концентрации по сухому веществу и смешивали ее с ФС в соотношениях: 10:90, 30:70,50:50, 70:30, 90:10. Определяли время желатинизации полученных смесей, а также вязкость и значение рН после их приготовления и через 10 сут.

Представленные в табл.1 данные свидетельствуют о том, что все композиции имеют работую вязкость, которая не из-

меняется через 10 сут, а визуальный контроль показал, что жизнеспособность сохраняется в течение трех месяцев. Композиции, содержащие более 30% Φ C, не отверждеются стандартным методом, применяемым для К Φ O, при $100^{\rm O}$ C на кипящей водяной бане. При $16^{\rm O}$ C время желатинизации лежит в пределах от 60 до 165 с, увеличиваясь с увеличением содержания карбамидоформальдегидного компонента (табл.1).

Таблица 1 Физико-химические свойства связующих

Состав связующе-		На	Вязкость после при-	Вязкость через	Время жела-
КФ-МТ	ΦС	-	готовле -	10 сут,	при 160°С,
			ния, с	C	С
10	90	8.7	14,2	16	60
30	70	8,6	15,2	16	75
50	50	8,4	17	18	86
70	30	8,3	20	22	130
90	10	8,3	25	26	165
100	-	8,2	37	37	240

Следует отметить, что на желатинизацию фенольных смол влияет температура, а для КФО (без катализатора) она несущественна. Так, например, время желатинизации КФО при 130° C составляет 280 с, а при 160° C – 243 с, в то время как ФС отверждаются при 130° C за 120, а при 160° C – за 53 с, т.е. время желатинизации сокращается в 2,5 раза, Подобным образом ведет себя смесь КФО и ФС (табл.2)

Таблица 2 Зависимость времени желатинизации от температуры

Связующие ве-		Врем д желатинизации, с, при темпера- туре, °C				
	шества	130	140	150	160	
	КФО	280	258	253	243	
	ФС	120	92	73	53	
	КФО:ФС(1:1)	197	135	124	86	

Для изучения термогидролитической устойчивости композиционного связующего образцы высушивали в вакууме, затем подвергали термообработке при 100,130,160°С в течение 15 мин. Применяли следующие методики: обработку образцов холодной водой и кипячение отвержденной смолы в воде при гидромодуле 1:100 и отгонку воды, содержащей формальде - гид, с помощью толуола, для чего использовали установку Дина-Старка.

Количество формальдегида, вымываемого холодной водой из образцов отвержденного композиционного связующего, зависит от соотношения КФО и ФС и температуры отверждения (табл.3). Из образцов, отвержденных при 160°С, выделяется формальдегида в 7...10 раз меньше, чем из отвержденных при 100°С. Существенно впияет состав: так, например, при соотношении КФО и ФС 50:50 выделенное количество формальдегида уменьшается в 4...5 раз, при соотношении 70:30 — в 1,5...2 раза по сравнению с количеством выделяющегося из КФО формальдегида.

Таблица 3 Количество формальдегида, экстрагируемого холодной

Состав связующего,%		Содержание формальдегида, %, при тем пературе обработки, ^O C			
КФО	ФС	1.00	130	160	
10	90	0,029	0,023	0,004	
30	70	0,047	0,021	0,007	
50	50	0,101	0,024	0,012	
70	30	0,268	0,076	0,021	
90	10	0,405	0,106	0,039	
100	112	0,430	0,115	0,049	
				,	

Интересно было проследить влияние воды и температуры на устойчивость связующих. Экстракция формальдегида горячей водой с последующей отгонкой в парах толуола ноказала, что абсолютное количество выделившегося формальдегида увеличивается, при этом образцы, отвержденные при более высокой температуре, менее чувствительны к воздействию кинящей

воды (табл.4). Можно отметить, что влияние соотношения компонентов на выделение формальдегида под действием горячей воды сказывается меньше, чем влияние температуры отверждения.

Таблииа 4 Количество формальдегида, экстрагируемого водой на установке Дина-Старка

Состав связующего,%		Содержание формальдегида, %, при тем- пературе обработки, ^о С			
КФО	ΦС	100	130	160	
10	90	0,79	0,05	0,04	
30	70	2,15	0.13	0,10	
50	50	2,53	0,59	0,23	
70	30	3,19	0,98	0,29	
90	10	7,15	1,43	0,34	
100	-	7,55	1,44	0,38	

Таким образом, применение метода термогидролитического воздействия на отвержденные образцы смол свидетельствует о том, что неустойчивым компонентом композиционного связующего является КФО, причем введением не менее 30 мас. % ФС можно добиться снижения выделения формальдегида в 1,5...3 раза.

Содержание азота (табл.5), оставшегося в твердых остатках после экстракции горячей водой, зависит от соотношения КФО и ФС и температуры обработки образцов. По количеству азота можно судить о гидролитической устойчивости содержащего его компонента (КФО). Повышение температуры обра – ботки композиции незначительно влияет на изменение содержания азота в остатках после термогидролитической обработки отвержденных композиций.

Данные, полученные при определении модуля сдвига отвержденных композиций, свидетельствуют об образовании более жесткой структуры. Для опыта готовились пленки композиционного связующего, которые обрабатывали при 100 и 130°С. Сушность метода заключается в определении резонансной час-

тоты крутильных колебаний для тонкого образца в форме диска в эвуковом диапазоне частот от 50 до 800 Гц. Как покавали исследования, с изменением температуры обработки пленок величина модуля сдвига растет независимо от состава омпозиции (табл.6). При сравнении показателей различных композиций необходимо отметить, что с увеличением содержания КФО значение модуля сдвига возрастает почти вдвое.Это свидетельствует о повышении жесткости структуры полимера и увеличении контактов в единице объема.

Таблица 5 Количество азота в остатках смол после экстракции

Состав связующего,%		Содержание азота,%, при температу- ре обработки, ^о С			
КФО	ФС	100	130	160	
1.0	90	4,39	4.56	4,90	
30	70	11,57	11,88	12,65	
50	5.0	15,35	18,85	21,16	
70	30	23,29	23.76	27,12	
90	10	29,65	31,81	32,91	
100	-	38,52	39,51	40,02	

Таблица 6 Динамический модуль сдвига отвержденных смол

остав связующего,%		Величина модуля сдвига, 10 ¹⁰ МПа, при температуре обработки, ос		
КФО	ΦС	100	130	
10	90	10,3	28.9	
30	70	10,7	38,2	
50	50	10.8	43,8	
70	30	17,7	53,4	
90	10	25,0	59,4	
100	-	36,1	72,3	

В ИК-спектрах образцов смол, подвергнутых термообработ, мы наблюдаем интенсивные полосы 3400, 1667 и 1010 см-,1

характерные для всех КФО. При сравнении спектров обнаружено, что полоса поглощения $3400~{\rm cm}^{-1}$, характерная для гидроксильных групп, и полоса $1010~{\rm cm}^{-1}$, характерная для метилольных групп, уменьшаются с повышением температуры обработки, одновременно с этим появляется плечо около $1000~{\rm cm}^{-1}$, свидетельствующее о возникновении в структуре эфирных метиленовых мостиков.

Выводы

- 1. Изучены свойства композиционного связующего, состояшего из карбамидоформальдегидного олигомера и фенолоспиртов. Такое связующее сохраняет жизнеспособность в течение 3 месяцев и стверждается под влиянием температуры интенсивнее КФО.
- 2. Следует ожидать, что при применении композиционного связующего значительно сократится токсичность плит, так как выделение формальдегида из этого связующего в 2...3 раза меньше, чем у карбамидоформальдегидного опигомера за счет образования более термогидролитически устойчивых соедине ний в результате взаимодействия КФО и ФС.

Литература

- 1. Калашникова В.М., Порошин Ю.Н. Фенольные пенопласты, модифицированные карбамидными олигомерами//Полимерные строительные материалы. 1977. Вып.48.
- 2. Гамова И.А., Каменков С.Д., Голубева И.М. Исспедование процесса отверждения карбамидоформальдегидного связующего для древесных пластиков//Изв.вузов. Лесной журнал. 1984. № 4.