УДК 674.815-41

Н.И. Коршунова, В.М. Балакин, С.Н. Пазникова (Уральская государственная лесотехническая академия)

ПРИМЕНЕНИЕ ХЛОРИДА НАТРИЯ ДЛЯ СНИЖЕНИЯ ТОКСИЧНОСТИ КАРБАМИДОФОРМАЛЬДЕГИДНЫХ СМОЛ И ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ НА ИХ ОСНОВЕ

Синтезированы образцы карбамидоформальдегидных смол с использованием в качестве модификаторов хлорида натрия и отхода производства полиэтиленполиаминов, содержащего 85...90% хлорида натрия. Показана возможность снижения содержания свободного формальдегида в смолах и токсичности ДСтП на их основе.

Снижение токсичности карбамидоформальдегидных смол (КФС) и древесных композиционных материалов (ДКМ) на их основе достигается различными приемами, в том числе введением в процессе синтеза КФС специальных модификаторов, взаимодействующих с формальдегидом и связывающих его.

В качестве модификаторов КФС часто применяют аминосоединения. Положительный эффект от использования при синтезе полиэтиленполиаминов (ПЭПА) был показан в [1]. Аналогично ПЭПА действует и отход его производства - реагент ОХН, содержащий 5...10% ПЭПА и 85...90% хлорида натрия [2]. Введение реагента ОХН в количестве от 2 до 10% от массы карбамида на всех стадиях реакции приводит к снижению в олигомере массовой доли свободного формальдегида. Минимальное содержание свободного формальдегида в КФС достигается при введении 8...10% модификатора ОХН.

В связи с тем, что в составе ОХН ооновную массу занимает хлорид натрия, целесообразно изучить его влияние на снижение содержания свободного формальдегида в КФС и на токсичность ДКМ, в частности, ДСтП.

Были синтезированы образцы КФС по методике синтеза смол марки КФ-О с конечным мольным соотношением Φ : K = 1,3 и 1,2 и марки КФ-МТ-15, а также образцы КФС, синтезированные по тем же методикам, но с введением в качестве модификаторов от 6 до 10% хлорида натрия или реагента ОХН на 2-й (перед вакууми-

рованием) или 3-й стадиях реакции. Мольное соотношение карбамид: хлорид натрия составляло при этом от 1: 0,06 до 1: 0,1.

Свойства КФС и физико-механические показатели образцов однослойных ДСтП на их основе приведены в таблице. В качестве отвердителя КФС использовали хлорид аммония или ОХА, рекомендованный [3] как отвердитель, одновременно снижающий токсичность карбамидоформальдегидных полимеров.

Снижение мольного соотношения Ф: К при синтезе немодифицированных смол ведет к снижению содержания свободного формальдегида и метилольных групп и к увеличению времени желатинизации. Введение модификаторов хлорида натрия и ОХН действует в том же направлении, понижая содержание свободного формальдегида и метилольных групп и увеличивая время желатинизации, причем хлорид натрия действует достаточно активно, внося существенный вклад в снижение токсичности КФС. Содержание свободного формальдегида в смолах, модифицированных хлоридом натрия, составляет от 35 до 80% от содержания формальдегида в контрольных смолах, а в смолах, модифицированных ОХН, от 46 до 67%.

По-видимому, изменение свойств олигомеров определяется не только возможностью протекания химических реакций формальдегида с аминами, но и комплексом коллоидно-химических свойств олигомера. Присутствие гидратированных катионов соли изменяет характер межмолекулярных взаимодействий и агрегации гидратированных частиц дисперсии КФС.

Хлорид натрия не только дает возможность получать КФС с низким содержанием свободного формальдегида, но повышает их стабильность при хранении. Свойства модифицированных ОХН карбамидных смол через 4...6 месяцев хранения при комнатной температуре мало изменяются по сравнению с их первоначальными свойствами, в то время как образцы контрольных немодифицированных смол и смол, модифицированных ПЭПА, к этому времени теряют свои технологические свойства и возможность использования в качестве связующих и клеев.

Токсичность ДСтП на основе синтезированных смол, определенная методом WKI, (4 ч, температура 60 °С, йодометрический метод) также указывает на значительный вклад клорида натрия. Содержание свебодного формальдегида в ДСтП на связующем, мо-

Свойства карбамидоформальдегидных смол и ДСтП

Обозначение	CBC	Свойства смолы	JIPI		Свой	ства ДСтІ	Свойства ДСтП с отвердителем	леж	
образца				Хлог	Хлорид вммония			OXA	
смолы	Φ, %	MT, %	Тж, с	Φ, мг/100 r	o _{nar} , MIIa	S. 9.	Ф. мг/100r	o _{Kar} ΜΠa	S, %
$\Phi: K = 1.3$									
КФ -О	0.28	22	25	36.4	19.8	24.5	29.5	30.0	23.3
КФ-XH-10(2)	0.11	12.2	09	23.4	16.8	16.8	11.5	12.8	15.6
КФ-ХН-10(3)	0.10	13.3	47	20.7	14.9	15.3	11.5	6.6	18.9
КФ-ОХН-10(2)	0.13	15.0	61	10.6	14.7	30.0	12.6	16.7	22.0
КФ-ОХН-10(3)	0.18	17.3	29	12.5	18.0	14.3	12.6	14.9	12.8
Φ · K = 1.2									
	0.15	15.5	62	21.5	19.1	24.3	18.9	16.9	17.9
5 КФ-XH-10(2)	0.10	13.7	09	15.4	16.3	19.3	11.8	14.8	29.6
КФ-ХН-10(3)	0.13	14.8	62	12.5	13.0	15.5	9.1	15.1	25.2
КФ-ОХН-10(2)	0.10	11.7	63	10.9	14.4	23.3	10.2	10.8	29.6
КФ-ОХН-10(3)	0.15	14.6	69	13.6	18.3	16.5	15.7	20.7	14.3
КФ-МТ-15									
КФ-ХН-10(3)	0.10	11.0	\$	9.3	20.1	11.4	8.9	20.7	12.8
КФ-ОХН-10(2)	0.08	8.6	74	7.1	19.0	12.5	7.8	18.4	12.6

Примечания. 1. Ф - массовая доля свободного формальдегида в смоле, 7%, и в ДСтП, иг/100г; МГ - массовая доля мети-лольных групп, 7%; Т_ж - время желатинизации при 100°С, с; с_{каг} - предел прочности при изгибе, МПа; S - разбухание по толщине, 6.

2. В обозначениях образцов смол принято: ХН - хлорид натрия; ОХН - реагент ОХН; 10 - массовая доля модификатора от количества карбамида; цифры 2 и 3 в скобках - стадия синтеза.

дифицированном хлоридом натрия, составляет от 56 до 83% от величины этого показателя в контрольных плитах с отвердителем хлоридом аммония и от 39 до 90% с отвердителем ОХА. Смолы с модификатором ОХН еще больше усиливают этот эффект.

По данным двухфакторного дисперсионного анализа использование в качестве модификатора КФС хлорида натрия и ОХН значимо влияет на выделение формальдегида из ДСтП. Физикомеханические показатели (предел прочности при изгибе и разбухание) ДСтП на модифицированных связующих достаточно высокие, но уступают показателям контрольных плит.

Таким образом, полученные результаты указывают на возможность снижения токсичности карбамидоформальдегидных смол и ДСтП на их основе модификацией смол при синтезе хлоридом натрия или ОХН, содержащем в своем составе хлорид натрия, с сохранением физико-механических показателей ДСтП на уровне стандартных требований. Действие ОХН являєтся комплексным, включающим коллоидно-физическое воздействие соли и химическое действие полиаминов.

Литература

- 1. А.с. 1735312 СССР, МКИ СО8 G 12/40. Способ получения модифицированной мочевиноформальдегидной смолы/ В.М. Балакин, Ю.И. Литвинец, В.В. Глухих и др. (СССР). № 4762487/05; Заявл. 27.11.89; Опубл. 23.05.92, Бюл. № 19.
- 2. Заявка N 95-112166/04(021338) от 18.07.95. Способ получения карбамидоформальдегидной смолы/ В.М. Балакин, Ю.И. Литвинец, В.В. Глухих и др. Решение о выдаче патента на изобретение ВНИИГПЭ от 24.01.96.
- 3. Опытно-промышленная проверка эффективности применения реагента ОХА для производства древесностружечных плит пониженной токсичности. / В.М. Балакин, В.В. Глухих, В.Г. Дедюхин и др. // Технология древесных плит и пластиков: Межвуз. сб. науч. тр. Свердловск: УЛТИ, 1988. С.4-9.