На основе проведенных исследований можно сделать следующие выводы:

- 1. На основе анализа растительного сырья Уральского региона и проведенных исследований разработана технология получения камбучи.
- 2. Изучена динамика процесса ферментации камбучи, что показало оптимальность продолжительности ферментации в течение периода 6-7 дней.
- 3. Изучено влияние экстрактов растительного сырья на физикохимические и органолептические свойства в процессе первичной и вторичной ферментации. Рекомендовано добавление экстракта листьев мяты в дозировке 3 %. По результатам полученных данных добавление экстрактов ускоряет процесс первичной и вторичной ферментаций.
- 4. Рекомендовано добавление экстрактов на этапе вторичной ферментации для здоровья медузомицета и сохранения установленных технико-экономических характеристик.

Научная статья УДК 665.939.57

ИССЛЕДОВАНИЕ ПРОЧНОСТИ СКЛЕИВАНИЯ МАССИВНОЙ ДРЕВЕСИНЫ КЛЕЕВОЙ КОМПОЗИЦИЕЙ НА ОСНОВЕ ЭПОКСИДНОЙ СМОЛЫ

Кирилл Васильевич Носоновских ¹, Максим Владимирович Газеев ²

- ^{1,2} Уральский государственный лесотехнический университет, Екатеринбург, Россия
- ¹ kirya.nosonovskikh@mail.ru

Анномация. Описана актуальность разработки новых клеевых композиций для склеивания древесины. Рассмотрена возможность применения эпоксидной смолы в качестве основы клея для клееных древесных конструкций (КДК).

Ключевые слова: клееные древесные конструкции, склеивание древесины, эпоксидные смолы

_

² gazeevmv@usfeu.ru

[©] Носоновских К. В., Газеев М. В., 2022

Scientific article

INVESTIGATION OF THE BONDING STRENGTH OF SOLID WOOD WITH AN EPOXY-BASED ADHESIVE COMPOSITION

Kirill V. Nosonovskikh ¹, Maxim V. Gazeev ²

^{1,2}Ural State Forest Engineering University, Yekaterinburg, Russia

Abstract. The paper describes the relevance of the development of new adhesive compositions for gluing wood. The possibility of using epoxy resin as a base for an adhesive for glued wood structures is considered.

Keywords: glued wood structures, gluing wood, epoxy resins

В столярном и мебельном производствах всегда велик спрос на клеи обладающие высокими адгезионными и когезионными свойствами. Это связано с тем, что клееная древесина имеет ряд преимуществ перед цельной:

- минимизируется число внутренних напряжений в изделии из древесины, приводящих к искривлению и его разрушению под воздействием влаги и высоких температур;
 - увеличиваются показатели прочности;
 - повышается звуко- и теплоизоляция;
- появляется возможность получения материалов крупного сечения, большой длины и сложных форм [1].

При работе с древесиной используются различные типы клеев (ПВА, ПУР, ЭПИ и пр.). Но клеи на основе эпоксидных смол в этой области распространены мало. В основном их применяют для склеивания металлов, тканей, различных композитов. Однако, эпоксидные смолы обладают высокими адгезионными свойствами, коме того, клеи на их основе влаго- и термостойкие. Именно поэтому применение таких клеев при производстве клееных древесных конструкций (КДК) представляется весьма интересной областью исследования.

Целью работы является исследование и разработка новой клеевой композиции на основе эпоксидной смолы, обладающей высокими физикомеханическими свойствами, в том числе более быстрой отверждаемостью, чем у конкурентов. Это позволит сократить затраты времени на операцию склеивания древесины, что значительно повысит производительность в целом, так как данная операция является узким местом в любом технологическом процессе. Кроме того, разрабатываемый клей должен соответствовать классу нагрузки D4 европейского стандарта DINEN 205. Это означает,

¹ kirya.nosonovskikh@mail.ru

² gazeevmv@usfeu.ru

что изделия, склеенные данным клеем, будут обладать повышенной влаго-и теплостойкостью и их можно будет использовать вне помещений.

Ключевой показатель клеевого соединения — это прочность на скалывание вдоль клеевого шва. На этот показатель были испытаны образцы, склеенные клеевой композицией на основе эпоксидной смолы. Испытание проводилось в соответствии с ГОСТ 33120-2014 [2].

Для склеивания использовалась древесина бука с влажностью 7,6 % (рис. 1). Влажность зафиксирована влагомером CONDTROL Hydro Easy №14056.

Рис. 1. Процесс склеивания ламелей бука

В ходе испытаний при помощи электронных весов ACOMJW-1 был вычислен расход данной клеевой композиции на основе эпоксидной смолы (при нанесении кистью), который составил 132 г/м².

Из полученной ламели были вырезаны образцы для испытаний. Образцы соответствуют ГОСТ 33120-2014. Площадь клеевого шва составила $0,0006 \,\mathrm{m}^2$ (рис. 2).

Испытание склеенных образцов проводилось на машине VEB Werkstoffprufmascinen Leipzig при помощи специального приспособления (рис. 3). Приспособление с установленным в нем образцом помещают на опорную платформу испытательной машины таким образом, чтобы ось пуансона приспособления совпадала с осью нагружающего устройства испытательной машины. Образец нагружают непрерывно при скорости перемещения нагружающей головки испытательной машины $(0,60 \pm 0,15)$ мм/мин. Испытание продолжают до разрушения образца [2].

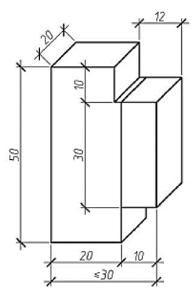


Рис. 2. Форма и размеры образца для испытаний на скалывание

Рис. 3. Образец, закрепленный в специальном приспособлении под нагрузкой испытательной машины

Результаты проведенных испытаний приведены в таблице.

Протокол испытаний по определению прочности клеевого соединения при скалывании вдоль волокон древесины

Маркировка образца	Размер площади скалыва- ния образца, F		Doomywysysys	Предел прочности	Разрушение
	Ширина b, см	Длина l, см	Разрушающая нагрузка Р, Н	клеевого соединения σ, МПа	по древе- сине, %
1	2	3	4400	7,3	15
2	2	3	4780	7,9	12
3	2	3	1150	1,9	7
4	2	3	5080	8,5	16
Среднее значение			3852	6,4	12,5

Результат в 6,4 МПа является довольно низким показателем. Характер скалывания ровный, прямо по клеевому шву, практически без волокон древесины. Это также свидетельствует о недостаточной прочности клеевого соединения. Образец под номером 3 показал значительно меньший результат, чем остальные, всего лишь 1,9 МПа. Предположительно, это связано с тем, что во время прессования ламелей нагрузка была распределена неравномерно, и участок, из которого был выпилен образец №3, оказался дефектным.

Необходимо дальнейшее исследование и проведение дополнительных опытов. Данный состав клеевой композиции не соответствует предъявляемым требованиям. Нужно пересмотреть соотношение массовых частей и

добавить различные модификаторы, к примеру такие как ускоритель и пластификатор. К тому же, можно рассмотреть возможность применения способов интенсификации склеивания, например активацию клеевого шва при аэроионизации или нагреве.

Список источников

- 1. Волынский В. Н. Технология клееных материалов. Архангельск : Арханг. гос. техн. ун., 2003. 280 с.
- 2. ГОСТ 33120-2014 Конструкции деревянные клееные. Методы определения прочности клеевых соединений. М.: Стандартинформ, 2019. 20 с.

Научная статья УДК 504.054

НЕКОТОРЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА НАКОПЛЕНИЕ НИТРАТОВ В СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЯХ

Елена Сергеевна Онохова¹, Екатерина Валериевна Евдокимова²

^{1,2}Уральский государственный лесотехнический университет, Екатеринбург, Россия

Анномация: Рассмотрены некоторые факторы, способствующие накоплению нитратов в сельскохозяйственных растениях на примере ржи и овса. Определено, какая часть растений содержит наибольшее количество нитратов.

Ключевые слова: нитраты, накопление нитратов, сельскохозяйственные растения

Scientific article

SOME FACTORS, AFFECTING NITRATES ACCUMULATION IN AGRICULTURAL PLANTS

Elena S. Onokhova¹, Ekaterina V. Evdokimova²

^{1,2}Ural State Forestry Engineering University, Yekaterinburg, Russia

¹cerulean.dawn@yandex.ru

²evdokimovaev@m.usfeu.ru

_

¹ cerulean.dawn@yandex.ru

² evdokimovaev@m.usfeu.ru

[©] Онохова Е. С., Евдокимова Е. В., 2022