

Г. Г. Ордуянц С. П. Санников

ПЕРЕДАТОЧНЫЕ ФУНКЦИИ, УСТОЙЧИВОСТЬ И ПЕРЕХОДНЫЕ ПРОЦЕССЫ В СИСТЕМАХ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ

Электронный архив УГЛТУ

Курсовое проектирование

Екатеринбург 2023

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Уральский государственный лесотехнический университет» (УГЛТУ) Кафедра управления в технических системах и инновационных технологий

> Г. Г. Ордуянц С. П. Санников

ПЕРЕДАТОЧНЫЕ ФУНКЦИИ, УСТОЙЧИВОСТЬ И ПЕРЕХОДНЫЕ ПРОЦЕССЫ В СИСТЕМАХ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ

Курсовое проектирование

Задания и методические указания по их выполнению для курсового проектирования по дисциплине «Теория автоматического управления» для обучающихся по направлениям 15.03.04, 27.03.04 очной и заочной форм обучения

> Екатеринбург 2023

Печатается по рекомендации методической комиссии Инженернотехнического института УГЛТУ. Протокол № 2 от 13 октября 2022 г.

Рецензент — доцент кафедры автомобильного транспорта и транспортной инфраструктуры, канд. техн. наук Демидов Д. В.

Предназначены для всех обучающихся, осваивающих образовательные программы всех направлений и специальностей высшего образования, реализуемых в УГЛТУ.

Редактор З. Р. Картавцева Компьютерная верстка Л. Е. Иощенко

Подписано в печать 20.10.2023		Поз. 1	4
Плоская печать	Формат 60×84/16	Тираж	: 10 экз.
Заказ №	Печ. л. 1,86	Цена	руб. коп.

Редакционно-издательский отдел УГЛТУ Отдел оперативной полиграфии УГЛТУ

оглавление

Введение	5
Примерная рабочая программа курса	6
Задание 1	
Задание 2	8
Задание 3	9
Задание 4	
Задание 5	
Методические указания по выполнению заданий	14
Приложение	
Библиографический список	
· ·	

введение

Выбор варианта при выполнении курсового проекта определяется последней цифрой зачетной книжки для заданий с четными номерами и предпоследней — с нечетными номерами. Отчет о выполнении каждого задания должен содержать исходные данные, методику расчета, схемы и графики.

Результаты вычислений для функций при разных значениях аргумента рекомендуется представлять в виде таблиц. В случае выполнения подобных расчетов с помощью вычислительной техники распечатку программы и результатов надо вклеить в задание.

ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА КУРСА

1. <u>Общие принципы построения систем автоматического управ-</u> <u>ления и регулирования</u>. Классификация систем управления. САР по возмущения, отклонению и комбинированные. САС, программное регулирование, следящие системы. Статическое и астатическое регулирование.

2. <u>Математическое описание и моделирование линейных элементов и систем управления</u>. Общие понятия о передаточных свойствах СА. Линейные дифференциальные уравнения при описании динамики объектов СА. Операторный метод, динамические характеристики. Частотные характеристики. Основные типовые возмущающие воздействия. Расчет переходных процессов в линейных САР.

3. <u>Характеристики и модели типовых динамических звеньев систем управления</u>. Классификация звеньев. Пропорциональное, дифференцирующее, реальное дифференцирующее, интегрирующее, интегродифференцирующее, апериодическое І-го порядка, запаздывающее звенья. Звено 2-го порядка. Соединение звеньев автоматики. Обратные связи жесткие, гибкие. Замкнутые системы.

4. <u>Устойчивость САР</u>. Понятие устойчивости по Ляпунову. Критерии Рауса – Гурвица, Михайлова, Найквиста. Логарифмический критерий устойчивости. Построение областей устойчивости по одному параметру (*D*-разбиение).

5. <u>Основные законы регулирования</u>. Пропорциональное (П), интегральное (И), пропорционально-интегральное (ПИ) и пропорциональноинтегрально-дифференциальное (ПИД) регулирование.

6. <u>Переходные процессы в линейных САУ. Качество переходных</u> <u>процессов.</u> Переходные процессы в автоматических системах с типовыми регуляторами. Прямые и косвенные оценки качества регулирования. Оценки качества переходного процесса в системах регулирования постоянной величины при возмущениях вида ступенчатой функции. Корневой метод оценки качества регулирования. Частотные методы анализа качества регулирования. Вещественные частотные характеристики (ВЧХ), их свойства и взаимосвязь с соответствующими им переходными процессами. Приближенное построение переходной характеристики по ВЧХ. Основные качественные оценки по вещественным частотным характеристикам. Интегральные оценки качества регулирования. 1-я, 2-я и 3-я интегральные оценки. Ошибки регулирования.

7. <u>Синтез корректирующих элементов в простейших САР.</u> Постановка задачи синтеза. Последовательная и параллельная коррекция по логарифмическим частотным характеристикам.

8. <u>Основы анализа линейных импульсных систем управления</u>. Общие сведения о дискретных системах. Математическое описание дискретных систем. Уравнения в конечных разностях. Дискретное преобразование Лапласа. Метод *z*-изображений в расчете импульсных САР. Реальные импульсные фильтры. Амплитудно-импульсная модуляция, экстраполятор нулевого порядка, их *z*-передаточные функции. Устойчивость импульсных систем. Основной критерий устойчивости, критерии Михайлова и Найквиста. Переходные характеристики импульсных систем и оценка качества импульсных систем по этим характеристикам.

9. <u>Характеристики и основные методы анализа нелинейных систем управления.</u> Особенности нелинейных систем. Типовые нелинейные элементы СУ и их характеристики. Метод фазовых траекторий и их построение с помощью изоклин, метод кусочно-линейной аппроксимации, метод гармонической линеаризации. Оценка абсолютной устойчивости с помощью критерия Попова.

10. <u>Оптимальные системы управления</u>. Введение в адаптивное управление. Задачи оптимального управления, критерии оптимальности. Методы теории оптимального управления. Управление. Понятие об адаптивном управлении.

ЗАДАНИЕ 1

На рис. 1 приведена пассивная электрическая цепь в виде моста.

Рис. 1. Мостовая схема к задаче 1

Необходимо записать дифференциальные уравнения и найти передаточную функцию, если в качестве входного сигнала взято напряжение на первичных зажимах U_1 , в качестве выходного — напряжение на вторичных зажимах U_2 .

Значения параметров схемы приведены в табл. 1.

Таблица 1

Параметры					Вариа	анты				
схемы	0	1	2	3	4	5	6	7	8	9
<i>R</i> ₁ , кОм	1,0	0,33	0,43	2,2	0,82	0,33	1,0	3,3	0,82	0,43
$R_{_2}$, кОм	0,33	0,82	1,0	3,3	4,3	0,43	4,3	8,2	2,2	0,22
$L_{_1}, \Gamma$ н	0,8	0,4	0,3	1,0	0,2	0,5	0,9	0,7	1,1	0,25
L_2 , Гн	0,3	1,2	0,5	0,4	0,8	0,5	1,0	0,6	0,4	0,3

Варианты параметров

ЗАДАНИЕ 2

На рис. 2 изображена структурная схема автоматической системы.

Рис. 2. Структурная схема системы

Передаточные функции имеют вид:

$$W_1(p) = K_1$$
 — усилительное звено;
 $W_2(p) = \frac{K_2}{p}$ — интегрирующее звено;
 $W_3(p) = \frac{K_3}{T_1p+1}$ — инерционное (апериодическое 1-го
порядка) звено;
 $W_4(p) = \frac{K_4}{(T_2p+1)(T_3p+1)}$ — апериодическое звено 2-го порядка;
 $W_5(p) = K_5$ — усилительное звено;
 $W_6(p) = K_6 p$ — дифференциальное звено;
 $W_7(p) = K_7$ — усилительное звено.

Значения коэффициентов передачи и постоянных времени приведены в табл. 2

Таблица 2

Исходные					Вари	анты				
данные	0	1	2	3	4	5	6	7	8	9
K_{1}	1,8	2,1	2,0	1,6	1,4	2,0	0,8	1,2	1,5	1,0
<i>K</i> ₂	0,03	0,04	0,01	0,08	0,06	0,06	0,04	0,02	0,01	0,03
<i>K</i> ₃	1,6	1,8	2,1	1,4	1,0	0,8	1,2	2,2	2,0	1,6
K_4	1,1	2,4	1,8	1,6	1,2	1,4	2,1	2,0	1,5	1,0
K_{5}	1,6	2,0	2,2	1,8	1,9	1,3	1,5	2,0	1,8	2,4
K_{6}	2,1	0,8	1,1	0,8	1,8	1,4	1,6	1,2	1,0	1,5
<i>K</i> ₇	1,7	1,2	2,0	1,8	1,0	1,6	1,4	1,1	1,2	1,5
$T_1^{}$, c	4,0	2,0	2,2	3,5	3,2	2,5	2,2	3,5	4,5	3,2
T_2 , c	0,4	0,3	0,8	0,7	0,2	0,7	0,9	0,6	0,8	0,9
<i>T</i> ₃ , c	1,0	1,2	1,4	1,6	1,2	1,1	1,3	1,5	1,4	1,8

Варианты параметров передаточных функций

В задаче необходимо выполнить следующее:

1) найти передаточную функцию разомкнутой системы;

2) найти передаточную функцию замкнутой системы по задающему воздействию X(p).

ЗАДАНИЕ 3

Апериодическое звено 2-го порядка описывается передаточной функцией следующего вида:

$$W(p) = \frac{K}{(T_1 p + 1)(T_2 p + 1)}.$$

В табл. 3 приведены значения коэффициента передачи и постоянных времени T_1 и T_2 .

Таблица 3

Исходные					Вариа	нты				
данные	0	1	2	3	4	5	6	7	8	9
K	8,0	6,0	5,0	9,0	4,0	10,0	7,0	8,0	7,0	5,0
$T_1^{}, c$	0,01	0,012	0,02	0,015	0,02	0,01	0,03	0,01	0,018	0,01 6
$T_2^{}$, c	0,1	0,12	0,15	0,2	0,3	0,25	0,2	0,1	0,3	0,24

Значения параметров звеньев

Необходимо построить амплитудно-фазовую (АФХ) (комплексночастотную (КЧХ)), амплитудно-частотную (АЧХ), фазочастотную (ФЧХ) и асимптотическую логарифмическую амплитудно-частотную (ЛАЧХ) характеристики звена.

ЗАДАНИЕ 4

Система описывается характеристическим уравнением вида: $a_3 p^3 + a_2 p^2 + a_1 p + a_0 = 0.$

Значения коэффициентов $a_0 \div a_3$ приведены в табл. 4.

Таблица 4

Исходные					Вариа	анты				
данные	0	1	2	3	4	5	6	7	8	9
a_{3}, c^{3}	10,0	12,0	8,0	8,0	8,0	11,0	9,0	12,0	10,0	6,0
a_{2}, c^{2}	5,0	8,0	4,0	3,0	4,0	6,0	3,0	5,0	4,0	2,0
<i>a</i> ₁ , <i>c</i>	2,5	1,5	1,0	1,2	2,4	1,2	1,1	2,0	1,0	1,3
$a_{_0}$	10,0	12,0	14,0	16,0	12,0	18,0	16,0	15,0	12,0	10,0

Значения коэффициентов

ЗАДАНИЕ 5

Расчет переходного процесса в линейной системе автоматического регулирования

Рассматривается система автоматического регулирования уровня связующего (или любой иной жидкости) в баке. Объект регулирования

(OP) — бак (рис. 3), регулируемый параметр — уровень H. Возмущающим воздействием, нарушающим материальный баланс и приводящим к отклонению уровня от заданного $H_{3a\partial}$, является изменение нагрузки аппарата, т. е. расход связующего G_p . Уровень жидкости измеряется с помощью датчика *LE*. На основе сравнения текущего значения уровня H с заданным $H_{3a\partial}$ автоматический регулятор (AP) *LC* вырабатывает управляющее воздействие, приводящее в движение исполнительный механизм (ИМ) и регулирующий орган (PO), изменяющие, в свою очередь, приток G_{Π} жидкости в бак.

Вместо текущих значений переменных H, G_p и G_{Π} удобно рассматривать их отклонения от некоторого исходного состояния:

 $y = H - H_{3a\partial}$ — отклонение уровня от заданного значения (выходной параметр);

 $f = G_p - G_{p_0}$ — отклонение расхода относительного начального значения (возмущение);

 $x = G_{\Pi} - G_{\Pi_0}$ — отклонение притока относительно начального значения (управляющее воздействие).

Тогда дифференциальное уравнения объекта (OP) может быть записано так:

$$T\frac{dy}{dt} + y = K_x x - K_f f ,$$

где *t* — текущее время;

T — постоянная времени OP;

*К*_{*f*} — коэффициент передачи ОР по каналу возмущения;

 K_{x} — коэффициент передачи ОР по каналу управления.

Предполагается, что возмущающее воздействие имеет вид неединичного скачка $f(t) = f \cdot l(t)$,

где f = const, a 1(t) = $\begin{cases} 1 & для & t \ge 0, \\ 0 & для & t < 0. \end{cases}$

Рис. 3. Схема системы автоматического регулирования

В задаче требуется:

1) представить OP в виде структурной схемы и определить передаточные функции по каналам управления $W_{x}(p)$ и возмущения $W_{f}(p)$;

2) рассчитать и построить кривую переходного процесса y(t) в OP а отсутствие автоматического регулятора (AP), если возмущение имеет вид неединичного скачка заданной величины f;

3) составить структурную схему системы автоматического регулирования (САР) и найти передаточную функцию замкнутой САР по каналу возмущения;

4) рассчитать и построить кривую переходного процесса y(t) в системе с АР при скачкообразном изменении возмущения на величину f;

5) оценить влияние AP на изменение времени переходного процесса в OP;

6) сделать соответствующие выводы.

Исходные данные для расчета приведены в табл. 5.

Таблица 5

Исходные		Номер варианта									
данные	0	1	2	3	4	5	6	7	8	9	
Т,с	6,0	7,0	8,0	9,0	10,0	11,0	12,0	13,0	14,0	15,0	
K_f , c/m ²	3,0	3,2	3,4	3,6	3,8	4,0	5,0	3,2	4,0	3,8	
$K_x, c/M^2$	1,2	1,4	1,2	1,4	1,5	1,7	1,6	1,8	1,9	1,0	

Исходные данные системы

Окончание табл. 5

$f\cdot 10^{-2}$, m³/c	2,0	2,2	1,6	1,8	2,4	2,6	1,4	1,2	2,8	2,0
Тип регулятора	П	П	ПИ	ПИ	П	П	ПИ	ПИ	П	ΠИ
K_p	1,8	2,0	2,2	2,5	3,0	2,8	2,2	2,6	1,6	1,6
T_{y_3}	_	_	4,0	4,5	2,0	2,0	5,0	5,5	_	6,0

Там же указаны размерности этих величин. Размерность выходного параметра [y] = M. Размерность управляющего воздействия $[x] = M^3/c$.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ЗАДАНИЙ

Задание 1

В качестве примера рассмотрим нахождение передаточной функции для пассивной цепи, схема которой изображена на рис. 4.

Рис. 4. Схема пассивной цепи

Запишем дифференциальное уравнение для контуров, обозначенных на рис. 4:

$$i_1 R_1 + \frac{1}{c_1} \int i_1 dt = U_1,$$

$$i_2 R_2 + \frac{1}{c_2} \int i_2 dt = U_1.$$

В операторной форме эти уравнения запишутся так:

$$I_{1}(p)R_{1} + \frac{1}{pC_{1}}I_{1}(p) = U_{1}(p),$$

$$I_{2}(p)R_{2} + \frac{1}{pC_{2}}I_{2}(p) = U_{1}(p),$$

откуда

$$I_{1}(p) = \frac{U_{1}(p)pC_{1}}{T_{1}p+1}, I_{2}(p) = \frac{U_{1}(p)pC_{2}}{T_{2}p+1},$$
где

$$T_{1} = C_{1}R_{1},$$

$$T_{2} = C_{2}R_{2},$$

$$p$$
 — оператор Лапласа.

Напряжение $U_2(t)$ на вторичных зажимах можно определить следующим образом:

$$U_2(t) = \frac{1}{C_2} \int i_2 dt - i_1 R_1,$$

или в операторной форме:

$$U_2(p) = \frac{1}{pC_2} I_2(p) - I_1(p) R_1.$$

Подстановка выражений для токов $I_1(p)$ и $I_2(p)$ позволяет найти связь между входным $U_1(p)$ и выходным $U_2(p)$ сигналами:

$$U_{2}(p) = \frac{1}{pC_{2}} \frac{pC_{2}}{T_{2}p+1} U_{1}(p) - \frac{R_{1}pC_{1}}{T_{1}p+1} U_{1}(p) = U_{1}(p) \frac{1 - T_{1}T_{2}p^{2}}{(T_{1}p+1)(T_{2}p+1)},$$

откуда передаточная функция получается равной:

$$W(p) = \frac{U_2(p)}{U_1(p)} = \frac{1 - T_1 T_2 p^2}{(T_1 p + 1)(T_2 p + 1)}$$

Задание 2

Напомним, что при последовательном соединении звеньев (рис. 5, *a*) общая передаточная функция определяется произведением передаточных функций отдельных звеньев:

$$W(p) = \prod_{i=1}^n W_i(p),$$

а при параллельном соединении (рис. 5, б) — их суммой:

$$W(p) = \sum_{i=1}^n W_i(p).$$

При соединении с обратной связью (рис. 5, *в*) общая передаточная функция замкнутой системы находится так:

Рис. 5. Соединение звеньев автоматики

В этом выражении знак (–) относится к положительной обратной связи, когда $X_1(p) = X(p) + Y_{o.c.}(p)$, а знак (+) — к отрицательной обратной связи, когда $X_1(p) = X(p) - Y_{o.c.}(p)$.

Для случая весьма распространенной единичной отрицательной обратной связи (рис. 5, c) выражение для $W_{q}(p)$ получается таким:

$$W_{_3}(p) = \frac{W(p)}{1+W(p)}.$$

В качестве примера рассмотрим нахождение передаточной функции разомкнутой и замкнутой систем, структурная схема которой изображена на рис. 6.

Рис. 6. Структурная схема системы

Звенья с передаточными функциями $W_1(p)$ и $W_2(p)$ соединены последовательно, а потому их общая передаточная функция:

$$W_{12}(p) = W_1(p) \cdot W_2(p).$$

В свою очередь, звенья с передаточными функциями $W_{12}(p)$ и $W_3(p)$ соединены параллельно, а потому их общая передаточная функция:

$$W_{123}(p) = W_{12}(p) + W_{3}(p).$$

Звено с такой передаточной функцией соединено последовательно со звеном, имеющим передаточную функцию $W_4(p)$. Тогда:

$$W_{1234}(p) = W_{123}(p) + W_4(p)$$

Это и будет передаточная функция разомкнутой системы, которая теперь запишется так:

$$W_{pa3}(p) = W_{1234}(p) = W_4(p)[W_3(p) + W_1(p)W_2(p)].$$

При нахождении $W_{_{3}}(p)$ учтем, что обратная связь — единичная отрицательная, следовательно:

$$W_{_{3}}(p) = \frac{W_{_{pa3}}(p)}{1 + W_{_{pa3}}(p)} = \frac{W_{_{4}}(p)[W_{_{3}}(p) + W_{_{1}}(p)W_{_{2}}(p)]}{1 + W_{_{4}}(p)[W_{_{3}}(p) + W_{_{1}}(p)W_{_{2}}(p)]}$$

Задание 3

В качестве примера рассмотрим построение частотных характеристик звена с передаточной функцией:

$$W(p) = \frac{10}{p(0,25p+1)}.$$

Амплитудно-фазовой (АФХ) (комплексной частотной (КЧХ)) характеристикой называется геометрическое место концов вектора $W(j\omega)$ при изменении частоты ω от 0 до ∞ .

$$W(j\omega) = \frac{10}{j\omega(0,25j\omega+1)} = \underbrace{\frac{A(\omega)}{10}}_{\omega\sqrt{(0,25\omega)^2+1}} \underbrace{\frac{\phi(\omega)}{(-90^\circ - \operatorname{arctg} 0,25\omega)}}_{-90^\circ - \operatorname{arctg} 0,25\omega}$$

Зависимость модуля $A(\omega)$ функции $W(j\omega)$ от частоты есть амплитудно-частотная характеристика (АЧХ), зависимость фазы $\phi(\omega)$ функции $W(j\omega)$ от частоты — фазо-частотная характеристика (ФЧХ).

Данные расчета сведены в табл. 6.

Таблица б

	Расчетные данные звена											
(0) , c ⁻¹	0	1	2	4	10	—						
A(ω)	_	9,98	4,45	1,77	0,37	0						
φ(ω)	-90°	-104°	-126°34′	-135°	-153°30⁄	-180°						

По данным табл. 6 строим АФХ, АЧХ, ФЧХ (рис. 7).

Рис. 7. Частотные характеристики звена

Асимптотическая амплитудно-частотная характеристика (рис. 8) соответствует выражению:

 $L(\omega) = 20 \, lg \, A(\omega) = 20 \, lg \, \frac{10}{\omega \sqrt{(0,25\omega)^2 + 1}} = 20 \, lg \, \frac{10}{\omega} - 10 \, lg [(0,25\omega)^2 + 1].$

По оси абсцисс отложен логарифм частоты ω в декадах (и сама частота ω , c⁻¹), по оси ординат — $L(\omega)$ в децибелах.

Рис. 8. Логарифмическая амплитудно-частотная характеристика звена

Начальный участок характеристики соответствует интегрирующему звену (20 $lg \frac{10}{\omega}$) и представляет собой прямую, проходящую с наклоном $-20 \frac{\partial \delta}{\partial e\kappa}$ через точку (0; 20 lg 10). В точке, соответствующей частоте сопряжения $\omega_c = \frac{1}{0.25} = 4 \ c^{-1}$ наклон изменяется еще на $-20 \frac{\partial \delta}{\partial e\kappa}$, в результате чего общий наклон 2-го участка равен $-40 \frac{\partial \delta}{\partial e\kappa}$.

Задание 4

Критерий Рауса – Гурвица позволяет оценить устойчивость системы, описываемой характеристическим уравнением вида:

$$H(p) = a_n p^n + a_{n-1} p^{n-1} + \dots + a_2 p^2 + a_1 p + a_0 = 0.$$

Составим определитель из коэффициентов этого уравнения:

$$\Delta n = \begin{bmatrix} a_{n-1} \\ a_{n-1} \\ a_{n-2} \\ a_{n-2} \\ a_{n-2} \\ a_{n-4} \\ a_{n-4$$

При заполнении определителя по главной диагонали ставятся все коэффициенты характеристического уравнения, начиная со второго (a_{n-1}) . Выше диагонального члена ставятся коэффициенты при более низких степенях p, ниже — при более высоких. На место коэффициентов, индексы которых больше n или меньше нуля, ставятся нули. Диагональные миноры выделены пунктирными линиями.

САР устойчива, если при $a_n > 0$ определитель Δ_n (Рауса – Гурвица) и все его диагональные миноры, получающиеся вычеркиванием из предыдущего определителя последней строки и последнего столбца, положительны.

Например, характеристическое уравнение САР имеет вид:

$$H(p) = 6p^3 + 3p^2 + p + 10 = 0.$$

Тогда

$$\Delta_{3} = \begin{vmatrix} 3 & 10 & 0 \\ 6 & 1 & 0 \\ 0 & 3 & 10 \end{vmatrix} = 3 \cdot 1 \cdot 10 - 6 \cdot 10 \cdot 10 < 0,$$
$$\Delta_{2} = \begin{vmatrix} 3 & 10 \\ 6 & 1 \end{vmatrix} = 3 - 60 < 0,$$
$$\Delta_{1} = |3| = 3 > 0.$$

Система неустойчива, т. к. Δ_3 и Δ_2 отрицательны.

Для оценки устойчивости по критерию Михайлова надо построить кривую Михайлова (геометрическое место концов вектора $H(j\omega)$). Если она начинается на вещественной положительной оси, поворачивается с ростом частоты в положительном направлении (против часовой стрелки), проходит последовательно *n* квадрантов, нигде не обращаясь в ноль, и в *n*-ом квадранте уходит в бесконечность, то САР устойчива.

Оценим устойчивость системы, характеристическое уравнение которой таково:

$$H(p) = 0.2p^{3} + p^{2} + p + 10 = 0$$

Запишем $H(j\omega)$: $H(j\omega) = 0,2(j\omega)^3 + (j\omega)^2 + j\omega + 10 = -0,2j\omega^3 - \omega^2 + j\omega + 10 =$ $= (10 - \omega^2) + j\omega(1 - 0,2\omega^2) = A(\omega) + jB(\omega) = 0.$

Результаты расчета $A(\omega)$ и $B(\omega)$ для разных частот ω сведем в табл. 7.

Таблица 7

<i>W</i> , c ⁻¹	0	0,5	1	1,5	2	3	4
$A(\omega)$	10	9,75	9	7,75	6	1	-6
$B(\omega)$	0	0,475	0,8	0,8	0,4	-2,4	-8,8

Расчетные данные для построения

По данным расчета строим семейство векторов, огибающая концов которых (рис. 9) и есть кривая Михайлова.

Рис. 9. Кривая Михайлова

Видно, что САР неустойчива, т. к. не соблюдается последовательность прохождения квадрантов.

Задание 5.

Рассмотрим пример расчета для следующих исходных данных: T = 10; $K_f = 4,5$; $K_x = 1,5$; $f = 2 \cdot 10^{-2}$; параметр П-регулятора: $K_p = 2$; параметры ПИ-регулятора — $K_p = 2$; $T_{u_3} = 5$.

1. Анализ объекта регулирования.

 $W_f(p)$ —

Запишем уравнение движения объекта в операторной форме:

 $TpY(p) + Y(p) = K_x X(p) - K_f F(p),$

или

$$Y(p)(Tp+1) = K_x X(p) - K_f F(p)$$

Отсюда

$$Y(p) = \frac{K_x}{Tp+1} X(p) - \frac{K_f}{Tp+1} F(p) = W_x(p) X(p) - W_f(p) F(p),$$

 $W_x(p)$ — передаточная функция ОР

где

передаточная функция ОР по управляющему воздействию; передаточная функция ОР

по возмущению.

Тогда структурную схему ОР можно представить в таком виде (рис. 10).

Рис. 10. Структурная схема ОР

2. Построение переходного процесса y(t) в OP в отсутствие автоматического регулятора (AP) в случае, когда возмущение имеет вид неединичного сигнала $f(t) = f \cdot 1(t) = 2 \cdot 10^{-2} \cdot 1(t)$.

Положим в исходном уравнении x(t) = 0. Тогда получим:

$$T\frac{dy}{dt} + y = -K_f f \,.$$

Решением этого уравнения является функция:

$$y(t) = -K_f f(1 - e^{-t/T}) = -9 \cdot 10^{-2} (1 - e^{-t/10}) \text{ M}.$$

Расчет переходного процесса следует вести для интервала времени $0 \le t \le 5T = 50$ с.

Выберем шаг по времени $\Delta t = 5$ с.

Данные расчета сведем в табл. 8.

Таблица 8

<i>t</i> , c	0	5	10	15	20	25
<i>t</i> /10	0	0,5	1	1,5	2	2,5
$e^{-t_{10}}$	1	0,61	0,37	0,22	0,14	0,08
$1 - e^{-t/10}$	0	0,39	0,63	0,78	0,86	0,92
$y = -4,5 \cdot 2 \cdot 10^{-2} (1 - e^{-t/1})$	٥Ø۲	$_{M}$ - 3,54 $\cdot 10^{-1}$	$x^{2}-5,68\cdot10^{-3}$	$-7 \cdot 10^{-2}$	-7,78·10 ⁻	$^{2}-8,26\cdot10^{-1}$
<i>t</i> , c	0	30	35	40	45	50
t, c t/10	0 0	30 3	35 3,5	40 4	45 4,5	50
$\frac{t, c}{t/10}$ $e^{-t/10}$	0 0 1	30 3 0,05	35 3,5 0,03	40 4 0,02	45 4,5 0,01	50 5 0,007
$\begin{array}{c} t, c \\ t/10 \\ e^{-t/10} \\ 1 - e^{-t/10} \end{array}$	0 0 1 0	30 3 0,05 0,95	35 3,5 0,03 0,97	40 4 0,02 0,98	45 4,5 0,01 0,99	50 5 0,007 0,993

Расчетные данные для построения v(t)

По данным табл. 8 строится график y(t) (рис. 11). Из графика видно, что $y_{y_{cm}} = -K_f f = -0.9$ м, а время регулирования (с точностью $\delta = \pm 0.05 y_{v_{cm}}$) равно $t_{TI} \cong 30$ с.

3. Структурная схема замкнутой САР изображена на рис. 12.

Отклонение выходного параметра y(t) от установившегося значения появляется как следствие возникновения возмущения f(t). На входе AP сигнал $\Delta y(t) = g(t) - y(t)$, где g(t) — задающее воздействие (в нашем случае — $H_{_{3ad}}$). В зависимости от величины и знака этого отклонения AP формирует управляющее воздействие x(t), действие которого на OP противоположно действию возмущения f(t). В результате этого отклонения у либо ликвидируется полностью, либо значительно уменьшается (в зависимости от типа регулятора).

Передаточные функции регуляторов:

$$\ll \Pi \gg - W_{\Pi}(p) = K_{p};$$

$$\ll \Pi M \gg - - W_{\Pi H}(p) = K_p + K_H \frac{1}{p} = K_p (1 + \frac{1}{T_{us}p}) = \frac{K_p (T_{us}p + 1)}{T_{us}p}.$$

Параметры K_p и T_{u_3} являются настроечными, т. е. могут изменяться при настройке АР.

В соответствии со структурной схемой (рис. 12) найдем передаточные функции замкнутой САР по возмущению.

Рис. 11. График переходного процесса в ОР

Рис. 12. Структурная схема САР

$$W_{f_{3am}}(p) = \frac{y(p)}{F(p)} = \frac{W_{f}(p)}{1 + W_{p}(p)W_{x}(p)} = \frac{W_{f}(p)}{1 + W_{x}(p)W_{p}(p)}.$$

Тогда для системы с П-регулятором передаточная функция будет равна:

$$W_{f_{3am}}(p) = \frac{-K_f}{Tp + 1 + K_p K_x},$$

для системы с ПИ-регулятором:

$$W_{f_{Jam}}(p) = \frac{-K_{f}T_{us}p}{T_{p}T_{us}p^{2} + pT_{us}(1+K_{p}K_{x}) + K_{p}K_{x}}.$$

4. Построение кривой переходного процесса в системе с AP при скачкообразном изменении возмущения f(t).

В операторной форме выходной сигнал может быть найден так:

$$Y(p) = W_{f_{3am}}(p) \cdot F(p) = \frac{G(p)}{H(p)},$$

где $F(p) = \frac{f}{p}$ — изображение неединичного возмущения.

Для перехода от Y(p) к y(t) можно воспользоваться теоремой разложения.

Изображению $Y(p) = \frac{G(p)}{H(p)}$ соответствует оригинал: $y(t) = \sum_{k=1}^{n} \frac{G(p_k)}{H'(p_k)} e^{p_k t},$

где

$$H'(p_k) = \frac{d}{dp} [H(p)]$$
 при $p = p_k$,

 $G(p_{\mu}) = G(p)$ при $p = p_{\mu}$,

 p_k — корни уравнения H(p) = 0, k = 1, 2, ..., n.

Корни уравнения H(p) = p(10p+4) = 0 получаются равными $p_1 = 0$, $p_2 = -0,4$. Откуда $H'(p_1) = 4, H'(p_2) = -4$.

Тогда для системы с П-регулятором получается:

$$Y(p) = \frac{-K_f f}{p[Tp+1+K_p K_x]} = \frac{-4.5 \cdot 2 \cdot 10^{-2}}{p[10p+1+2 \cdot 1.5]} = \frac{-9 \cdot 10^{-2}}{p(10p+4)} =$$
$$= y(t) = \sum_{k=1}^{2} \frac{G(p_k)}{H'(p_k)} e^{p_k t} = -9 \cdot 10^{-2} \left(\frac{1}{4} e^{0 \cdot t} + \frac{1}{-4} e^{-0.4t}\right) =$$
$$= -2.25 \cdot 10^{-2} (1 - e^{-t/2.5}),$$

где $G(p_1) = G(p_2) = 9 \cdot 10^{-2}$. Расчет проведен для $0 \le t \le 5T$, где T = 2,5c. Данные расчета сведены в табл. 9.

Таблица 9

		5	1		
<i>t</i> , c	0	1	2	3	4
0,4 <i>t</i>	0	0,4	0,8	1,2	1,6
$e^{-0,4t}$	1	0,67	0,45	0,3	0,2
$1 - e^{-0.4t}$	0	0,33	0,55	0,7	0,8
$y = -2,25 \cdot 10^{-2} (1 - e^{-0.4t}),$ M	0	$-0,74 \cdot 10^{-2}$	-1,24 · 10 ⁻²	-1,57 · 10 ⁻²	-1,8 · 10 ⁻²
<i>t</i> , c	0	5	6	7	8
0,4 <i>t</i>	0	2,0	2,4	2,8	3,2
$e^{-0,4t}$	1	0,14	0,09	0,06	0,04
$1 - e^{-0.4t}$	0	0,86	0,91	0,94	0,96
$y = -2,25 \cdot 10^{-2} (1 - e^{-0.4t}), M$	0	-1,94 · 10 ⁻²	-2,05 · 10 ⁻²	$-2,11 \cdot 10^{-2}$	$-2,16 \cdot 10^{-2}$
<i>t</i> , c	0	9	10	12	14
0,4 <i>t</i>	0	3,6	4	4,8	5,6
$e^{-0,4t}$	1	0,03	0,02	0,01	0,004
$1 - e^{-0.4t}$	0	0,97	0,98	0,99	0,996
$y = -2,25 \cdot 10^{-2} (1 - e^{-0.4t}), M$	0	$2.10 \cdot 10^{-2}$	$2.21 \cdot 10^{-2}$	$2.22 \cdot 10^{-2}$	2.25, 10-2

Результаты расчета

Для системы с ПИ-регулятором:

$$Y(p) = \frac{-K_{u3}T_{u3}f}{TT_{u3}p^{2} + T_{u3}(1 + K_{p}K_{x})p + K_{p}K_{x}} = \frac{-4,5\cdot5\cdot2\cdot10^{-2}}{10\cdot5p^{2} + 5(1+2\cdot1,5)p + 2\cdot1,5} = \frac{-0,9\cdot10^{-2}}{p^{2} + 0,4p + 0,06} = y(t) = \sum_{k=1}^{2} \frac{G(p_{k})}{H'(p_{k})}e^{p_{k}t} = \frac{-0,9\cdot10^{-2}}{2(-0,2+j0,14)t} + \frac{1\cdot e^{(-0,2-j0,14)t}}{2(-0,2-j0,14) + 0,4} = \frac{-6,42\cdot10^{-2}e^{-0,2t}}{10\cdot12}\sin(0,14t).$$

При расчете учитывалось, что уравнение

 $H(p) = p^2 + 0.4p + 0.06 = 0$ имеет корни $p_1 = -0.2 + j0.14$, $p_2 = -0.2 - j0.14$; H'(p) = 2p + 0.4.

График y(t) в этом случае представляет собой отрицательную синусоиду с амплитудой 6,42 и частотой $\omega = 0,14c^{-1}$, вписанную в экспоненту $e^{-0,2t}$ с постоянной времени $T = \frac{1}{0,2} = 5c$.

Для расчета графика по точкам следует выбрать интервал времени $0 \le t \le 4T = 20$ с с шагом $\Delta t = 2$ с.

Данные расчета сведены в табл. 10.

Таблица 10

		r		r	
<i>t</i> , c	0	4	5	6	8
-0,2t	0	-0,4	-0,8	-1,2	-1,6
$e^{-0,2t}$	1	0,67	0,45	0,3	0,2
0,14t	0	0,28	0,56	0,84	1,12
sin 0, 14t	0	0,28	0,53	0,75	0,9
$y(t) = -6,42 \cdot 10^{-2} e^{-0,2t} \sin 0,14t$	0	-1,18 · 10 ⁻²	-1,53 · 10 ⁻²	$-1,44 \cdot 10^{-2}$	-1,16 · 10 ⁻²
<i>t</i> , c	0	10	12	14	16
-0,2t	0	-2	-2,4	-2,8	-3,2
$e^{-0,2t}$	1	0,14	0,09	0,06	0,04
0,14t	0	1,4	1,68	1,96	2,24
sin 0, 14 <i>t</i>	0	0,98	0,99	0,93	0,78
$y(t) = -6,42 \cdot 10^{-2} e^{-0,2t} \sin 0,14t$	0	-0,85 · 10 ⁻²	$-0,58 \cdot 10^{-2}$	$-0,36 \cdot 10^{-2}$	$-0,21 \cdot 10^{-2}$
<i>t</i> , c	0	18	20	22	24
-0,2t	0	-3,6	-4,0	-4,4	-4,8
$e^{-0,2t}$	1	0,03	0,02	0,012	0,008
0,14 <i>t</i>	0	2,52	2,8	3,08	3,36
sin 0, 14t	0	0,58	0,34	0,062	-0,22
$y(t) = -6.42 \cdot 10^{-2} e^{-0.2t} \sin 0.14t$	0	$-0,1 \cdot 10^{-2}$	$-0,04 \cdot 10^{-2}$	$-0,005 \cdot 10^{-2}$	0,011 · 10 ⁻²
<i>t</i> , c		26	_	_	_
-0,2t		5.0			
		-5,2	—	—	—
$e^{-0,2t}$		-5,2 0,006		_	_
e ^{-0,2t} 0,14t		-5,2 0,006 3,64			
$e^{-0,2t}$ 0,14t sin 0, 14t		-5,2 0,006 3,64 -0,48			

Данные расчета переходного процесса

По данным табл. 9 и 10 построены графики переходного процесса (рис. 13). Кривая 1 — переходный процесс в САР с П-регулятором, кривая 2 — с ПИ-регулятором.

Можно перейти от изображения Y(p) к оригиналу y(t) с помощью табличных операторов (см. приложение). Продемонстрируем этот прием для системы с П-регулятором.

$$Y(p) = \frac{-9 \cdot 10^{-2}}{p(10p+4)} = y(t) = ?$$

«Подгоним» выражение для *Y*(*p*) под табличный оператор вида:

$$\frac{1}{p(p+a)} = \frac{1}{a} (1 - e^{-at}).$$

Для этого вынесем в знаменателе функции *Y*(*p*) за скобку число 10. Получим:

$$Y(p) = \frac{-9 \cdot 10^{-2}}{10p\left(p + \frac{4}{10}\right)} = \frac{-9 \cdot 10^{-2}}{10} \cdot \frac{1}{p(p+0,4)} =$$
$$= y(t) = -9 \cdot 10^{-3} \frac{1}{0,4} (1 - e^{-0.4t}) = -2,25 \cdot 10^{-2} (1 - e^{-\frac{t}{2},5})$$

что совпадает с результатом, полученным с помощью теоремы разложения.

Аналогичным образом можно найти оригинал у(t) для

$$Y(p) = \frac{-0.9 \cdot 10^{-2}}{p^2 + 0.4p + 0.06},$$

«сводя» при этом выражение *Y*(*p*) к табличному оператору следующего вида:

$$\frac{\omega}{(p+a)^2+\omega^2}=e^{-at}\sin\omega t.$$

Рис. 13. Графики переходных процессов в САР с П- и ПИ-регуляторами

5. Найдем время переходного процесса t_{π} в системе без регулятора и с П- и ПИ-регуляторами.

Под временем t_{II} понимают отрезок времени, по истечении которого выходной параметр y(t) отличается от своего нового установившегося значения не более чем на заранее установленную величину δ , которую обычно принимают равной $0,05y_{ycm}$ в системе без регулятора. В рассматриваемом примере

$$\delta = 0.05 \cdot 9 \cdot 10^{-2} = 0.45 \cdot 10^{-2} \text{ M}.$$

Выделив на графиках y(t) зоны, ограниченные $\pm \delta$, получим:

- для системы без регулятора $t_{\pi} = 30$ с (рис. 11);
- для системы с П-регулятором $t_{\Pi}^{\Pi} = 4$ с (рис. 13);
- для системы с ПИ-регулятором $t_{\Pi}^{\Pi B} = 14$ с (рис. 13).
 - 6. Подведем итоги.
 - 1) для варианта с П-регулятором.

Его применение позволило уменьшить время переходного процесса с 30 до 4 с. Установившееся значение отклонения выходного параметра уменьшилось в $(1 + K_p K_x)$ раз с $-9 \cdot 10^{-2}$ м до $-2,25 \cdot 10^{-2}$ м. Наличие этого отклонения (статической ошибки) является характерной особенностью си-

стем этого типа с П-регулятором. Уменьшение статической ошибки возможно за счет увеличения настроечного параметра (K_p) П-регулятора, но чрезмерно это делать нельзя из-за возможной потери устойчивости системой.

2) для системы с ПИ-регулятором.

Применение регулятора этого типа позволило уменьшить время переходного процесса с 30 до 14 с и полностью устранить остаточное отклонение выходного параметра. Статическая ошибка регулирования в этом случае равна нулю.

ПРИЛОЖЕНИЕ

Оригинал	Изображение
1	$\frac{1}{p}$
t^n	$\frac{n!}{p^{^{n+1}}}$
$e^{\mp at}$	$\frac{1}{p \pm a}$
$\frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{1}{p(p+a)}$
$t e^{-at}$	$\frac{1}{\left(p+a\right)^2}$
sin ω t	$\frac{\omega}{p^2 + \omega^2}$
cos <i>w</i> t	$\frac{p}{p^2 + \omega^2}$
$e^{-at}\sin\omega t$	$\frac{\omega}{(p+a)^2 + \omega^2}$
$e^{-at}\cos\omega t$	$\frac{\overline{p+a}}{(p+a)^2 + \omega^2}$

Изображение по Лапласу функций времени

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Гальперин, М. В. Автоматическое управление / М. В. Гальперин. – Москва : ИНФА-М: ФОРУМ, 2007.

2. Ким, Д. П. Теория автоматического управления / Д. П. Ким. – Москва : Физматлит, 2003.

3. Лукас, В. А. Теория автоматического управления : учебник для вузов / В. А. Лукас. 2-е изд., перераб. и доп. – Москва : Недра, 2004.

4. Ким, Д. П. Сборник задач по теории автоматического регулирования. Линейные системы / Д. П. Ким, Н. Д. Дмитриева. – Москва : Физматлит, 2007.

5. Теория автоматического управления : учебник для вузов. В 2 ч. / под ред. А. А. Воронова. 2-е изд., перераб. и доп. – Москва : Высшая школа, 1986.

6. Теория автоматического управления : учебник для вузов. В 2 ч. / под ред. В. А. Нетушила. 2-е изд., перераб. и доп. – Москва : Высшая школа, 1976.

7. Сборник задач по теории автоматического регулирования и управления : учебное пособие для вузов / под ред. В. А. Бесекерского. 5-е изд., перераб. и доп. – Москва : Наука, 1978.

8. Цыпкин, Я.С. Теория линейных импульсных систем / Я.С.Цыпкин, Ю.С.Попков. – Москва : Наука, 1973.