Nº 4 (91), 2024 г.

Леса России и хозяйство в них. 2024. № 4 (91). С. 178–187. Forests of Russia and economy in them. 2024. № 4 (91). Р. 178–187.

Научная статья УДК 630.323

DOI: 10.51318/FRET.2024.91.4.019

ПРОЕКТНАЯ ЛЕСОСЕКА: МОДЕЛИРОВАНИЕ И ФАКТОРНОЕ ОПИСАНИЕ

Сергей Борисович Якимович¹, Юрий Владимирович Лукин², Андрей Викторович Мякотников³

- 1-3 Уральский государственный лесотехнический университет, Екатеринбург, Россия
- ¹ yakimovichsb@m.usfeu.ru, , http://orcid.org/0000-0003-1013-6473
- ² reidkom@mail.ru, http://orcid.org/0009-0009-0465-0514

Анномация. Выполнен анализ способов оценки природно-производственных условий арендуемых лесных участков предприятия для проектирования технологий заготовки древесины, представлены их достоинства и недостатки. Дано понятие проектной лесосеки. Представлены разработанная методика и модель проектной лесосеки на основе корректируемых статистических оценок и пример ее использования для природно-производственных условий реального предприятия. Получены статистические оценки и законы распределения объемов заготовки и таксационных характеристик арендованных лесных участков и лесосек предприятия на основе снятия стохастической неопределенности методами математической статистики. Дан пример анализа результатов статистической обработки и корректировки статистических оценок лесосек. На основе анализа определены корректные параметры проектной лесосеки.

Ключевые слова: проектная лесосека, факторы и статистические оценки

Для цитирования: Якимович С. Б., Лукин Ю. В., Мякотников А. В. Проектная лесосека: моделирование и факторное описание // Леса России и хозяйство в них. 2024. № 4 (91). С. 178–187.

Original article

PROJECT LOGGING AREA: MODELING AND FACTOR DESCRIPTION

Sergey B. Yakimovich¹, Yuri V. Lukin², Andrey V. Myakotnikov³

- ¹⁻³ Ural State Forest Engineering University, Yekaterinburg, Russia
- ¹ yakimovichsb@m.usfeu.ru, http://orcid.org/0000-0003-1013-6473
- ² reidkom@mail.ru, http://orcid.org/0009-0009-0465-0514
- ³ majkotnikova.80@yandex.ru, http://orcid.org/0009-0009-2141-4626

Abstract. The analysis of methods for assessing the natural and production conditions of leased forest areas of the enterprise for the design of wood harvesting technologies is carried out, their advantages and disadvantages are presented. The concept of a project cutting area is given. The developed methodology

³ majkotnikova.80@yandex.ru, , http://orcid.org/0009-0009-2141-4626

and model of the project cutting area based on adjusted statistical estimates and an example of its use for the natural production conditions of a real enterprise are presented. Statistical estimates and laws of the distribution of harvesting volumes and taxation characteristics of leased forest plots and cutting areas of the enterprise are obtained based on the removal of stochastic uncertainty by methods of mathematical statistics. An example of the analysis of the results of statistical processing and correction of statistical estimates of logging sites is given. Based on the analysis, the correct parameters of the project cutting area were determined.

Keywords: project logging area, factors and statistical estimates

For citation: Yakimovich S. B., Lukin Yu. V., Myakotnikov A. V. Project logging area: modeling and factor description // Forests of Russia and economy in them. 2024. № 4 (91). P. 178–187.

Введение

Основой проектирования технологии заготовки древесины являются три составных части:

- предмет труда, или проектная лесосека, под которой понимается множество факторов и соответствующих статистических оценок, определяющих и влияющих на обоснование систем машин, способов и технологических схем их работы;
 - процесс и способы заготовки древесины;
- комплекты или системы машин для реализации этих способов.

Логистика транспорта древесины, включающая транспортные пути, промежуточные и иные погрузочно-разгрузочные промежуточные площадки, склады первичной переработки, подробно представлена в нашей ранее опубликованной работе (Якимович, Мехренцев, 2023) и в данной статье не рассматривается. Проектная лесосека есть статистическая модель совокупности реальных лесосек на арендуемых лесных участках, представленная формализованным математическим описанием, отражающем все требуемые факторы для проектирования технологии заготовки древесины. Параметрическое соответствие и совпадение, принадлежность факторов проектируемой системы машин к проектной лесосеке есть критерий качества проектирования, определяемый выражением МСМј⊆ МПРі, где МСМј – *j*-е множество факторов системы машин, МПРi - i-е множество факторов проектной лесосеки. Совпадение ј-го и і-го множеств обеспечивает функционирование с минимальными запасами и максимальной эффективностью. Проектирование технологии заготовки древесины определяется множеством факторов проектной лесосеки, большей частью стохастических (Якимович, Тетерина, 2008; Якимович, 2022), в том числе объемами заготовок, таксационными характеристиками арендуемых лесных участков, включающей в себя: породный состав, ликвидный запас, объем хлыста, а также размеры лесосек и расстояние трелевки, определяемые требованиями правил заготовки древесины (Правила..., 2020; Правила..., 2021) и выделенными в рубку лесными участками.

Для отдельно взятых лесосек учет стохастической неопределенности реализован (Барановский, Некрасов, 1977; Захариков, 1981) моделированием параметров каждой лесосеки. Однако в связи с различием параметров множества лесосек предприятия этот подход носит теоретический характер без возможности практического приложения. Большей частью параметры проектной лесосеки реализуются определением средних значений (Типизация..., 1986). Изложенное не позволяет выполнять выбор наиболее эффективных систем машин для всей совокупности лесосек конкретного предприятия в связи с тем, что невозможно содержать на предприятии соответствующий парк машин, чтобы каждой лесосеке соответствовал определенный комплект, а средние значения характеристик лесосек недостаточны для учета стохастической неопределенности условий функционирования машин. Для снятия стохастической неопределенности выбора систем машин для заготовки древесины имеется подход, основанный на группировке лесосек, отведенных в рубку, на основе законов распределения или кластеризации (Якимович, Тетерина, 2007). В определенной мере подобная группировка позволяет выбрать приемлемый комплект машин, но требует существенных

затрат при моделировании и персонала, владеющего этими компетенциями. Имеются подходы управления целочисленными значениями машин в системах по факту обнаружения неравномерности посредством подключения дополнительных машин на отстающих операциях (Заикин, Рыжикова, 2015). Однако подобное управление влечет значительные, не окупаемые в ряде случаев, издержки по причине нахождения в резерве (простое) дополнительных машин.

Полное исчерпывающее и автоматизированное моделирование лесосек с разработанным программным кодом на основе лазерных, оптических и геоинформационных систем представлено в монографии «Моделирование лесосечных работ» (Казаков, Рябухин, 2017). Однако при корректных моделях с функциями управления системами имеются существенная сложность и размерность моделей, а также требуются ресурсоемкие системы больших данных. Отметим также, что для каждой уникальной лесосеки потребуется уникальная машина для заготовки древесины, что весьма ресурсоемко. Практика этого подхода реализуется со временем при появлении систем датчиков с достоверной оценкой параметров лесосек под пологом леса и систем машин-трансформеров с изменяемой массой и энергосиловыми параметрами в пространстве и времени этих систем.

В этой связи особую значимость для совершенствования технологии заготовки древесины приобретает простая достоверная оценка природно-производственных условий для лесосек, т.е. создание проектной лесосеки как модели реальной совокупности лесосек и, как следствие, повышение эффективности предпроектного обоснования систем машин с обеспечением неистощительного лесопользования и сохранения биоразнообразия (Рябухин, 2016; Методические рекомендации..., 2020; Савиных и др., 2021). При этом необходимо, чтобы результат моделирования был бы достаточно прост и понятен. Возможно это на основе анализа распределения случайных переменных факторов с последующей корректировкой статистических оценок (Типизация, 1986) и законов распределения (Якимович, Тетерина, 2007, 2008) наиболее значимых факторов для обоснования систем машин заготовки древесины. Для моделирования проектной лесосеки использованы природно-производственные условия ООО «Рейд», Пермский край.

Цель, задача, методика и объекты исследования

Цель работы — обоснование методики достоверного факторного описания проектной лесосеки на основе корректируемых статистических оценок и повышение эффективности заготовки древесины на примере арендуемых лесных участков ООО «Рейд». Для реализации поставленной цели были решены следующие задачи:

- выполнен анализ способов оценки природно-производственных условий арендуемых лесных участков предприятия для проектирования технологий заготовки древесины, представлены их достоинства и недостатки;
- разработана методика достоверного факторного описания проектной лесосеки, включающая сбор природно-производственных данных по лесосекам и лесным участкам текущего и будущего периодов;
- статистическая обработка полученных результатов; обоснование параметров для проектирования на основе анализа законов распределения с корректировкой оценок среднего, медианы и других статистических оценок факторов проектной лесосеки;
- представление факторной модели проектной лесосеки, проектные рекомендации. Рассмотрено практическое приложение разработанной методики применительно к объекту исследования и проектирования.

Объект исследования – методика факторного описания проектной лесосеки на основе арендуемых лесных участков. Методологическая основа исследований определялась системным подходом, объединяющим в приложении к объектам исследования инвариантные разделы математической статистики для получения законов распределения, статистических оценок основных факторов проектной лесосеки с последующей корректировкой этих оценок. В практической апробации скорректированные оценки использованы для анализа

и совмещения факторного множества проектной лесосеки и параметров известных систем машин. Методы математической статистики использовались в рамках описательной статистики при определении статистических оценок рассматриваемых множеств и оценки распределений переменных факторов. Системный подход реализован посредством системного представления факторов разнообразия рассматриваемых множеств объектов лесного комплекса (Редькин, Якимович, 2005).

Статистические исходные данные текущего и будущих периодов заготовки древесины арендуемых лесных участков представлены для обоснования параметров лесосек и систем машин фраг-

ментом таблицы на рис. 1. Количество лесных участков – 42. Значения, представленные в таблице, обработаны в программной среде Statistica для получения данных по статистическим оценкам средних значений, медианы и законов распределения. На этой основе получены статистические оценки для выбора системы машин.

Методика сбора и обработки случайной величины подробно представлена в работе «Математическое моделирование и оптимизация технологий лесозаготовок» (Редькин, Якимович, 2005). Обработка реализована в программной среде Statistica. Копии экранов результатов обработки представлены на рис. 2–7.

	ダ ∽ ⇔ MA A	dd to Workbo	ook ▼ Add to Report	▼ Add to MS Word ▼ 🐧	S ♦? .		
	Статистические да	нные парм	етров лесосек на с	плошных рубках ООО	"Рейд"		
омер по порядку, как в табл.2.1 ВКР	1 Участковое лесничество	2 Номер квартала	3 Номер выдела/лесосе ки	4 Запас на га, <mark>3</mark>	5 Объем хлыста,м 3	6 Высота древостоя, м	7 Объем заготовки, м
1	Комарихинское	3	7	210	0,36	20	1032
2	Комарихинское	3	9	220	0,29	18	3303
3	Комарихинское	79	19	240	0.59	21	778
	Комарихинское	79	22	180	0,32	18	3159
	Комарихинское	79	23	150	0.324	18	1040
	Комарихинское	80	3	200	0.528	22	1440
	· ·				-,		
	Комарихинское	80	4	240	0,4	20	1620
	Комарихинское	80	5	180	0,324	18	940
	Комарихинское	90	12	220	0,3	18	2198
10	Комарихинское	90	18	180	0,36	18	1409
11	Комарихинское	3	2	190	0,42	21	2855
12	Верхне-Городков	130	1	190	0,36	20	4429
13	Верхне-Городков	174	3	200	0,484	22	1548
14	Верхне-Городков	174	4	220	0.38	19	1544
	Верхне-Городков	173	11	200	0.484	22	2790
	Верхне-Городков	174	14	170	0.48	22	2356
	Верхне-Городков	174	20	240	0,42	21	1102
	Верхне-Городков	175	2	200	0.42	21	5094
	Верхне-Городкові	175	8	270	0,42	22	1895
	Верхне-Городков	175	12	250	0,484	22	1238
	Верхне-Городков	175	13	140	0.324	18	265
	Верхне-Городков	181	3	130	0,462	21	456
	Верхне-Городков	181	4	220	0,42	21	455
	Верхне-Городков	181	17	180	0,572	22	178
	Верхне-Городков	181	20	210	0,528	22	775
	Верхне-Городков	181	21	190	0,462	21	1214
	Верхне-Городков	150	29	260	0,44	22	3370
	Верхне-Городков	153	31	280	0,552	23	3402
29	Верхне-Городков: Верхне-Городков:	153 153	32 33	260 220	0,644 0,42	23 21	211 2534

Рис. 1. Копия экрана фрагмента исходных данных параметров лесных участков Fig. 1. A copy of the screen of a fragment of the initial data of the parameters of forest areas

	Описательные статистики лесных участков ООО "Рейд"									
	N набл.	Среднее	Медиана	Минимум	Максим.	Дисперсия	Ст.откл.	Коэф.Вар.	Станд.	
Переменная									ошибки	
Запас на га, м ³	42,0000	210,2381	210,0000	130,0000	280,0000	1163,3566	34,1080	16,2235	5,2630	
Объем хлыста,м ³	42,0000	0,4460	0,4200	0,2900	0,6440	0,0091	0,0954	21,3832	0,0147	
Высота древостоя, м	42,0000	20,7619	21,0000	18,0000	23,0000	2,5761	1,6050	7,7306	0,2477	
Объем заготовки, м ³	42,0000	2154,4524	1757,5000	178,0000	5119,0000	2049763,1318	1431,6994	66,4531	220,9160	

Рис. 2. Копия экрана статистических оценок основных факторов лесных участков Fig. 2. A copy of the screen of statistical estimates of the main factors of forest areas

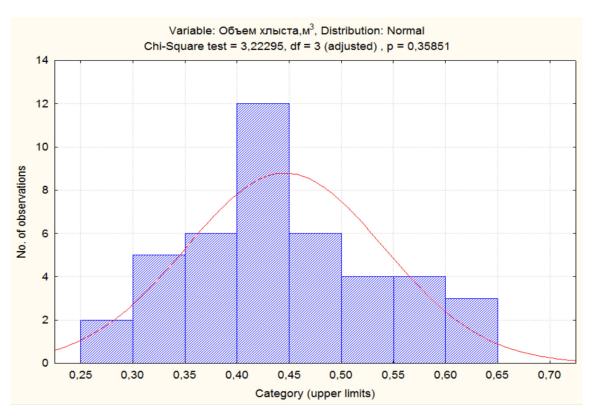


Рис. 3. Копия экрана закона распределения с гистограммой значений объема хлыста Fig. 3. A copy of the distribution law screen with a histogram of whip volume values

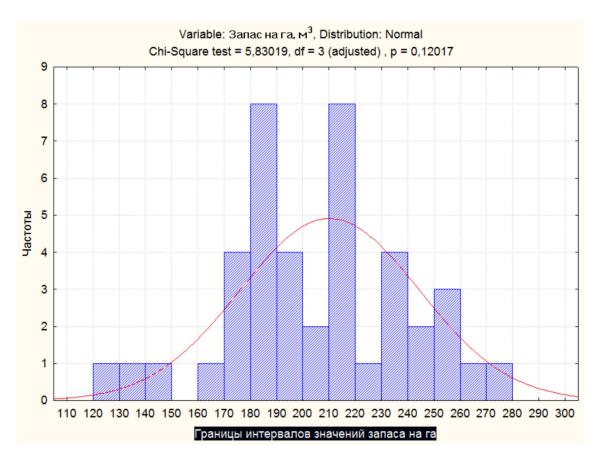
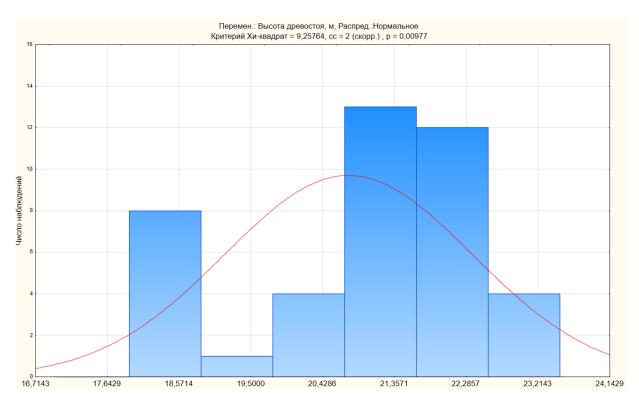



Рис. 4. Копия экрана закона распределения с гистограммой значений запаса на гектар Fig. 4. A copy of the distribution law screen with a histogram of the values per hectare

Puc. 5. Копия экрана закона распределения с гистограммой значений высоты древостоя Fig. 5. A copy of the distribution law screen with a histogram of stand height values

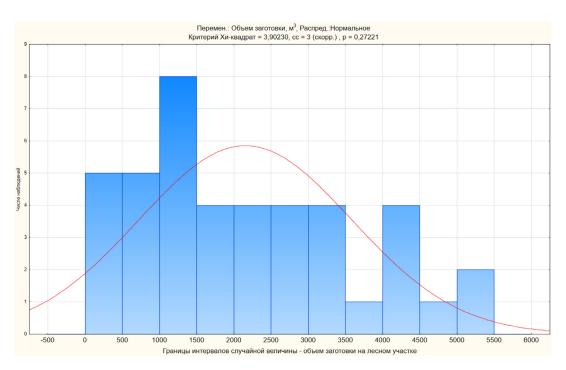


Рис. 6. Копия экрана закона распределения с гистограммой значений объема заготовки по лесным участкам

Fig. 6. A copy of the distribution law screen with a histogram of the values of the volume of harvesting by forest areas

	Перемен.: Объем заготовки, м³, Распред.:Нормальное ООО "Рейд" Хи-квадрат = 3,90230, сс = 3 (скорр.) , р = 0,27221									
Верхняя	Наблюд.	Кумул.	Процент	Кумул. %	Ожидаем.	Кумул.	Процент	Кумул. %	Наблюд	
Граница	Частота	Наблюд.	Наблюд.	Наблюд.	Частота	Ожидаем.	Ожидаем.	Ожидаем.	Ожидаем.	
<= 0,00000	0	0	0,00000	0,0000	2,779768	2,77977	6,61850	6,6185	-2,77977	
500,00000	5	5	11,90476	11,9048	2,425089	5,20486	5,77402	12,3925	2,57491	
1000,00000	5	10	11,90476	23,8095	3,615991	8,82085	8,60950	21,0020	1,38401	
1500,00000	8	18	19,04762	42,8571	4,778495	13,59934	11,37737	32,3794	3,22150	
2000,00000	4	22	9,52381	52,3810	5,596557	19,19590	13,32513	45,7045	-1,59656	
2500,00000	4	26	9,52381	61,9048	5,809217	25,00512	13,83147	59,5360	-1,80922	
3000,00000	4	30	9,52381	71,4286	5,344186	30,34930	12,72425	72,2602	-1,34419	
3500,00000	4	34	9,52381	80,9524	4,357247	34,70655	10,37440	82,6346	-0,35725	
4000,00000	1	35	2,38095	83,3333	3,148533	37,85508	7,49651	90,1312	-2,14853	
4500,00000	4	39	9,52381	92,8571	2,016357	39,87144	4,80085	94,9320	1,98364	
5000,00000	1	40	2,38095	95,2381	1,144424	41,01587	2,72482	97,6568	-0,14442	
5500,00000	2	42	4,76190	100,0000	0,575657	41,59152	1,37061	99,0274	1,42434	
< бесконеч.	0	42	0,00000	100,0000	0,408478	42,00000	0,97257	100,0000	-0,40848	

Рис. 7. Копия экрана статистической обработки значений объема заготовки по лесным участкам для выбора закона распределения с гистограммой в табличной форме

Fig. 7. A copy of the screen for statistical processing of the values of the volume of logging in forest areas for selecting the distribution law with a histogram in tabular form

Результаты и их обсуждение

Анализ статистической обработки основных параметров лесосек (см. рис. 1–7) выявил следующее.

1. Объем хлыста имеет незначительную дисперсию (разброс значений мал), что означает практическое его постоянство и для расчетов допустимо использование среднего значения, равного 0,45 м³ (см. рис. 2). Закон распределения объема

хлыста нормальный (см. рис. 3). Для каждой конкретной лесосеки целесообразно уточнение норм выработки. Анализ распределения по рис. 3 определил, что частоты расположены симметрично относительно среднего, наблюдается незначительный сдвиг в зону меньших значений. При необходимости следует использовать квартили распределения.

- 2. Анализ распределения запаса на 1 га (см. рис. 4) определил, что доля значений от среднего запаса, равного 210, до значения 270 м³/га составляет 43 % в общем объеме. Отсюда следует вывод о принятии для расчетов суммы значений среднего и среднеквадратического отклонения 210+34=244 м³/га в связи с тем, что значение среднего определяет заниженные значения параметра запаса на 1 га и, как следствие, заниженные производительность и норму выработки. Возможен вариант расчета производительности по интервалам значений от 120 до 210, от 210 до 280 м³/га с последующим взвешиванием (для вычисления производительности с весовыми коэффициентами) этих значений по вероятности.
- 3. Высота древостоя имеет незначительную дисперсию (см. рис. 2, рис. 5, разброс значений не более 5 м), и для расчетов допустимо использование среднего значения или медианы в связи с отсутствием практических различий. Дополнительный анализ формы гистограммы и закона распределения (см. рис. 5) приводит к выводу о необходимости использования значения высоты, равной 22 м, в связи со сдвигом частот основных значений в большую сторону от среднего. Возможен вариант расчета по интервалам.
- 4. Объем заготовки (ликвидный запас) по каждой лесосеке имеет существенный разброс, и до-

стоверность определения этих данных скажется на достоверности годовой производительности в связи с необходимостью учета времени на перебазировки. Среднее (см. рис. 2) составляет 2154,452, медиана – 1757,5. Наибольшая доля значений (см. рис. 6, 7) приходится на малые объемы – 76 % с объемом до 3000 м³, и при данной ситуации расчет годовой производительности следует вести с учетом значительного количества перебазировок по интервалам значений с последующим взвешиванием (вычисление производительности с весовыми коэффициентами) этих значений по вероятности.

Выводы

Таким образом, получены статистические оценки и законы распределения объемов заготовки и таксационных характеристик арендованных лесных участков и лесосек предприятия на основе снятия стохастической неопределенности методами математической статистики, что наглядно продемонстрировано в программной среде Statistica. Определены следующие наиболее простые и достоверные параметры проектной лесосеки: объем хлыста $0,45\,$ м 3 ; запас на $1\,$ га $q=244\,$ м 3 /га; породный состав $-90\,$ % мягколиственных, $10\,$ % хвойных; высота древостоя $22\,$ м, объем заготовки с одной лесосеки для расчета затрат времени на перебазировки $3000\,$ м 3 .

Список источников

Барановский В. А., Некрасов Р. М. Системы машин для лесозаготовок. М.: Лесн. пром-сть, 1977. 248 с. *Заикин А. Н., Рыжикова Е. Г.* Методика расчета продолжительности и оценки энергозатрат работы лесосечных машин // Известия высших учебных заведений. Лесной журнал. 2015. № 1 (343). С. 94–102.

Захариков В. М. Определение эффективных систем машин лесосечных работ на расчетных и оптимизационных моделях // Сб. науч. тр. Московского лесотехнического института. 1981. № 118. С. 5–8. Казаков Н. В., Рябухин П. Б. Моделирование лесосечных работ : монография. Хабаровск : Тихоокеанский государственный университет, 2017. 206 с.

Методические рекомендации по сохранению биологического разнообразия при заготовке древесины в лесах Пермского края / С. В. Залесов, А. С. Попов, Л. А. Белов [и др.]. Екатеринбург: Урал. гос. лесотехн. ун-т, 2020. 24 с.

Правила заготовки древесины и особенности заготовки древесины в лесничествах, лесопарках, указанных в статье 23 Лесного кодекса Российской Федерации : утв. приказом Мин-ва природ. ресурсов и экологии РФ от 01.12.2020 № 993. URL : https://www.consultant.ru/document/cons_doc_LAW_371476/ (дата обращения: 12.04.2024).

- Правила лесовосстановления, формы, состава, порядка согласования проекта лесовосстановления, оснований для отказа в его согласовании, а также требований к формату в электронной форме проекта лесовосстановления : утв. приказом Мин-ва природ. ресурсов и экологии РФ от 29 декабря 2021 г. № 1024. URL: https://www.consultant.ru/document/cons_doc_LAW_409248/ (дата обращения: 12.04.2024).
- Редькин А. К., Якимович С. Б. Математическое моделирование и оптимизация технологий лесозаготовок: учебник для вузов. М.: Московский государственный университет леса, 2005. 504 с.
- Рябухин П. Б. Экологические аспекты при эксплуатации лесозаготовительных машин // Леса России и хозяйство в них. 2016. № 3 (58). С. 68–71.
- Савиных Т. И., Савиных М. А., Якимович С. Б. Сравнительный анализ способов заготовки древесины харвестером по критерию производительности и удельной энергоемкости // Леса России и хозяйство в них. 2021. № 4 (79). С. 69–74.
- Типизация природно-производственных условий лесозаготовительных районов : рекомендации. Хим-ки : ЦНИИМЭ, 1986. 23 с.
- Якимович С. Б. Методика типизации и выделения однородных совмещенных множеств объектов лесного комплекса // RusForest 2022: I Ежегодн. междунар. науч.-практ. конф. «Устойчивое и инновационное развитие лесопромышленного комплекса», Екатеринбург, 03–04 февраля 2022. Екатеринбург : УГЛТУ, 2022. URL: https://disk.yandex.ru/d/gDEnugXlzCWmJw (дата обращения: 12.04.2024).
- Якимович С. Б., Мехренцев А. В. Типизация факторных множеств объектов лесного комплекса и предпроектное обоснование их размещения // Лесной вестник. Forestry Bulletin. 2023. Т. 27, № 6. DOI: 10.18698/2542-1468-2023-6-114-125
- Якимович С. Б., Тетерина М. А. Выбор систем заготовки древесины в условиях неопределенности // Известия Санкт-Петербургской лесотехнической академии. 2008. № 185. С. 263–268.
- Якимович С. Б., Тетерина М. А. Моделирование стохастических обрабатывающе-транспортных систем с перемещаемыми запасами // Вестник Московского государственного университета леса. Лесной вестник. Forestry Bulletin. 2007. № 6. С. 71–76.

References

- Baranovsky V. A., Nekrasov R. M. Systems of machines for logging. Moscow: Forest industry, 1977. 248 p.
- *Kazakov N. B.*, *Ryabukhin P. B.* Modeling of logging operations: Monograph. Khabarovsk: Pacific State University, 2017. 206 p.
- Methodological recommendations for the conservation of biological diversity in timber harvesting in the forests of the Perm Territory / S. V. Zalesov, A. S. Popov, L. A. Belov [et al.]. Yekaterinburg: Ural State Forest Engineering UN-t, 2020. 24 c.
- *Redkin A. K.*, *Yakimovich S. B.* Mathematical modeling and optimization of logging technologies: Textbook for universities. Moscow: Moscow State University of Forestry, 2005. 504 p.
- Rules of timber harvesting and features of timber harvesting in forestry, forest parks specified in Article 23 of the Forest Code of the Russian Federation. Approved by the Order of the Ministry of Natural Resources and Ecology of the Russian Federation dated 01.12.2020 № 993. URL: https://www.consultant.ru/document/cons doc LAW 371476/ (accessed 12.04.2024).
- Ryabukhin P. B. Ecological aspects in the operation of logging machines // Forests of Russia and economy in them. 2016. № 3 (58). P. 68–71. (In Russ.)
- Savinykh T. I., Savinykh M. A., Yakimovich S. B. Comparative analysis of harvesting methods by harvester according to the criterion of productivity and specific energy intensity // Forests of Russia and economy in them. 2021. № 4 (79). P. 69–74. DOI: 10.51318/FRET.2021.95.37.006 (In Russ.)

- The rules of reforestation, the form, composition, procedure for the approval of the reforestation project, the grounds for refusal of its approval, as well as the requirements for the format in electronic form of the reforestation project: Approved by Order of the Ministry of Natural Resources and Ecology of the Russian Federation № 1024. 7 dated December 29, 2021. URL: https://www.consultant.ru/document/cons_doc_LAW 409248/ (accessed 12.04.2024). (In Russ.)
- Typification of the natural production conditions of logging areas : recommendations. Khimki : TSNIIME, 1986. 23 p.
- Yakimovich S. B. Methodology of typification and allocation of homogeneous combined sets of objects of the forest complex // RusForest 2022: I Annual International Scientific and practical Conference "Sustainable and innovative development of the timber industry complex", Yekaterinburg, February 03–04, 2022. Yekaterinburg: UGLTU Publishing House, 2022. URL: https://disk.yandex.ru/d/gDEnugXlzCWmJw (accessed 12.04.2024). (In Russ.)
- Yakimovich S.B., Mehrentsev A. V. Typification of factor sets of forest complex objects and pre-design justification of their placement // Lesnoy vestnik. Forestry Bulletin. 2023. Vol. 27, № 6. DOI: 10.18698/2542-1468-2023-6-114-125 (In Russ.)
- Yakimovich S. B., Teterina M. A. The choice of wood harvesting systems in conditions of uncertainty // Proceedings of the St. Petersburg Forestry Academy. 2008. № 185. P. 263–268. (In Russ.)
- Yakimovich S. B., Teterina M. A. Modeling of stochastic processing and transport systems with movable stocks // Bulletin of the Moscow State University of the Forest. Lesnoy Vestnik. 2007. № 6. P. 71–76. (In Russ.)
- Zaikin A. N., Ryzhikova E. G. Methodology for calculating the duration and evaluation of energy consumption of cutting machines // Izvestia of higher educational institutions. Forest magazine. 2015. № 1 (343). P. 94–102. (In Russ.)
- Zakharikov V. M. Determination of effective systems of machines for logging operations on computational and optimization models // Collection of scientific tr. of the Moscow Forestry Institute. 1981. № 118. P. 5–8. (In Russ.)

Информация об авторах

- С. Б. Якимович доктор технических наук, профессор;
- Ю. В. Лукин магистрант;
- А. В. Мякотников магистрант.

Information about the authors

S. B. Yakimovich – Doctor of Technical Sciences, Professor;

Yu. V. Lukin – undergraduate;

A. V. Myakotnikov – undergraduate.

Статья поступила в редакцию 01.04.2024; принята к публикации 15.05.2024. The article was submitted 01.04.2024; accepted for publication 15.05.2024.