Научная статья УДК 635.92: 632.937.31: 634.74

СОДЕРЖАНИЕ ХЛОРОФИЛЛА В ЛИСТЬЯХ ТИПИЧНОЙ И ДЕКОРАТИВНОЙ ФОРМ *ACER PLATANOIDES* В ОБЪЕКТАХ ОЗЕЛЕНЕНИЯ НИЖНЕГО НОВГОРОДА

Данил Владимирович Быков¹, Наталья Николаевна Бессчетнова², Владимир Петрович Бессчетнов³

^{1, 2, 3} Нижегородский государственный агротехнологический университет имени Л. Я. Флорентьева, Нижний Новгород, Россия

Анномация. Приведена сравнительная оценка содержания хлорофилла-а в листьях типичной и краснолистной форм клена остролистного в уличных посадках г. Нижнего Новгорода. Показана индивидуальная и групповая фенотипическая изменчивость содержания хлорофилла-а в фотосинтезирующем аппарате однолетних побегов.

Ключевые слова: клен остролистный, объекты озеленения, листовой аппарат, хлорофилл-а, фенотипическая изменчивость

Для *цитирования*: Быков Д. В., Бессчетнова Н. Н., Бессчетнов В. П. Содержание хлорофилла в листьях типичной и декоративной форм *Acer platanoides* в объектах озеленения Нижнего Новгорода // Научное творчество молодежи – лесному комплексу России = Scientific creativity of youth to the forest complex of Russia: материалы XXI Всероссийской (национальной) научно-технической конференции студентов и аспирантов. Екатеринбург: УГЛТУ, 2025. С. 102–106.

Original article

THE CHLOROPHYLL CONTENT IN THE LEAVES OF THE TYPICAL AND DECORATIVE FORMS OF ACER PLATANOIDES AT LANDSCAPING FACILITIES IN NIZHNY NOVGOROD

Danil V. Bykov¹, Natalia N. Besschetnova², Vladimir P. Besschetnov³

^{1, 2, 3} Nizhny Novgorod State Agrotechnological University named after L. Ya. Florentyev, Nizhny Novgorod, Russia

_

¹ dbykoof@mail.ru

² besschetnova1966@mail.ru

³ lesfak@bk.ru

¹ dbykoof@mail.ru

² besschetnova1966@mail.ru

³ lesfak@bk.ru

[©] Быков Д. В., Бессчетнова Н. Н., Бессчетнов В. П., 2025

Abstract. A comparative assessment of the chlorophyll-a content in the leaves of the typical and red-leaved forms of *Acer platanoides* in the street plantings of Nizhny Novgorod is given. Individual and group phenotypic variability of chlorophyll-a content in the photosynthetic apparatus of shoots is shown.

Keywords: Acer platanoides, landscaping objects, leaf apparatus, chlorophyll-a, phenotypic variability

For citation: Bykov D. V., Besschetnova N. N., Besschetnov V. P. (2025) Soderzhanie hlorofilla v list'jah tipichnoj i dekorativnoj form *Acer platanoides* v obektah ozelenenija Nizhnego Novgoroda [The chlorophyll content in the leaves of the typical and decorative forms of *Acer platanoides* at landscaping facilities in Nizhny Novgorod]. Nauchnoe tvorchestvo molodezhi – lesnomu kompleksu Rossii [Scientific creativity of youth to the forest complex of Russia: proceedings of the XXI All-Russian (national) Scientific and Technical Conference of undergraduate and postgraduate students]. Ekaterinburg: USFEU, 2025. Pp. 102–106. (In Russ).

В озеленении городов России и других государств весьма популярны представители рода Клен (Acer L.), в числе которых наиболее востребован Клен остролистный (Acer platanoides L.). Обладая широким ареалом, где он представлен многочисленными декоративными формами и сортами, клен способен эффективно выполнять санитарно-гигиенические, декоративно-эстетические и рекреационно-бальнеологические функции в составе городских посадок различного целевого назначения и конструкций. С учетом вышеизложенного, целью исследования стало выявление характеристик пигментного состава листьев его типичной формы и сорта «Кримсон кинг».

Объектом исследований были одновозрастные особи типичной формы клена остролистного и его декоративного сорта «Кримсон кинг» ("Crimson king"), размещенные во внутриквартальных посадках г. Нижнего Новгорода. Предметом исследований служила их специфика в содержании хлорофилла-а. Использовали спектрофотометр СФ-2000 [1–3], концентрацию пигментов вычисляли по уравнениям Ветштейна – Хольма для 96 %-го этанола [4–6]. Перевод таких оценок в удельные показатели (мг/г) предусматривал параллельное определение наличия в листовой массе абсолютно сухого вещества [7–9].

Отмечены различия в пигментных характеристиках нормально развитых листьев сравниваемых объектов (табл. 1, 2). В пределах таксономической группы (типичная форма клена) содержание хлорофилла-a в листьях особей семенного происхождения изменчиво: от $1,17\pm0,057$ мг/г (дерево 5) до $2,14\pm0,238$ мг/г (дерево 9). Превышение большего из них над меньшим достигло 0,97 мг/г, или в 1,83 раза. Обобщенное среднее (вариант Total) в массиве полученных данных располагалось симметрично, достигнув значения $1,62\pm0,053$ мг/г (см. табл. 1).

Tаблица 1 Содержание хлорофилла-a в листьях типичной формы клена 1

Деревья	M	СКО	max.	min.	Δlim	±m	Cv, %	t	P, %
Дерево 1	1,62	0,23	1,85	1,34	0,51	0,102	14,11	15,85	6,31
Дерево 2	1,34	0,17	1,54	1,15	0,39	0,074	12,45	17,97	5,57
Дерево 3	1,74	0,41	2,38	1,33	1,05	0,185	23,76	9,41	10,63
Дерево 4	1,72	0,18	1,94	1,44	0,49	0,083	10,77	20,77	4,81
Дерево 5	1,17	0,13	1,38	1,05	0,34	0,057	10,94	20,43	4,89
Дерево 6	1,79	0,39	2,42	1,43	0,99	0,174	21,72	10,30	9,71
Дерево 7	1,48	0,17	1,64	1,22	0,42	0,075	11,30	19,79	5,05
Дерево 8	1,54	0,10	1,66	1,43	0,23	0,044	6,34	35,25	2,84
Дерево 9	2,14	0,53	2,65	1,38	1,27	0,238	24,82	9,01	11,10
Дерево 10	1,65	0,37	2,28	1,35	0,93	0,163	22,13	10,10	9,90
Total	1,62	0,37	2,65	1,05	1,61	0,053	23,04	30,69	3,26

¹ Статистики: М – среднее; СКО – среднеквадратическое отклонение; max. – абсолютный максимум; min. – абсолютный минимум; Δ lim – диапазон значений, \pm m – ошибка выборочного среднего; Cv – коэффициент вариации, %; t – критерий Стьюдента ($t_{05} = 2,009$; $t_{01} = 2,678$); P – точность опыта, %; число первичных единиц выборки – 50.

Реализация той же схемы анализа в отношении декоративного сорта клена «Кримсон кинг» вскрыла сопоставимые тенденции в накоплении хлорофилла-a (см. табл. 2): оценки колебались от 0.53 ± 0.037 мг/г (дерево 5) до 0.81 ± 0.104 мг/г (дерево 3). Расхождение между ними составило 0.28 мг/г, или в 1.53 раза. Итоговое обобщение (вариант Total) в этом случае было равно 0.69 ± 0.020 мг/г и было расположено достаточно симметрично относительно аналогичных оценок других учетных деревьев.

Таблица 2 Содержание хлорофилла-a в листьях клена сорта Кримсон кинг $^{\prime}$

Деревья	M	СКО	max.	min.	Δlim	±m	Cv, %	t	P, %
Дерево 1	0,75	0,07	0,83	0,66	0,17	0,030	8,82	25,34	3,95
Дерево 2	0,74	0,14	0,90	0,57	0,32	0,065	19,46	11,49	8,70
Дерево 3	0,81	0,23	1,08	0,55	0,53	0,104	28,81	7,76	12,89
Дерево 4	0,67	0,14	0,85	0,51	0,34	0,061	20,57	10,87	9,20
Дерево 5	0,53	0,08	0,64	0,45	0,19	0,037	15,63	14,31	6,99
Дерево 6	0,70	0,19	0,97	0,48	0,50	0,087	27,65	8,09	12,37
Дерево 7	0,67	0,12	0,83	0,49	0,34	0,055	18,40	12,15	8,23
Дерево 8	0,64	0,06	0,70	0,57	0,13	0,026	9,12	24,51	4,08
Дерево 9	0,63	0,06	0,71	0,58	0,13	0,025	8,99	24,86	4,02
Дерево 10	0,72	0,11	0,88	0,58	0,30	0,048	14,81	15,09	6,63
Total	0,69	0,14	1,08	0,45	0,63	0,020	20,56	34,39	2,91

Зафиксированы значительные различия в тестируемых характеристиках сравниваемых между собой образцах клена остролистного. В частности, обобщенное среднее значение типичной формы клена в 2,36 раз, или на 0,47 мг/г, превосходило аналогичную оценку декоративного сорта клена «Кримсон кинг». Указанные различия проявились на выровненном фоне условий местообитания как в сравнении особей типичной формы клена остролистного, имеющих семенное происхождение, так и в случае сопоставления характеристик разноокрашенных образцов, возникли основания к признанию наследственной обусловленности некоторой части общей фиксируемой в этом случае фенотипической дисперсии. Однофакторный дисперсионный анализ подтвердил выдвинутое предположение (табл. 3).

Таблица 3 Существенность различий между особями клена по содержанию хлорофилла- a^1

Критерий Фишера		Доля влияния фактора $(h^2 \pm s_h^2)$							Критерии		
(F)		по Плохинскому			по Снедекору			различий			
$F_{05/01}$	Foп	h^2	$\pm s_h^2$	F_h^2	h ²	$\pm s_h^2$	F_h^2	HCP ₀₅	D_{05}		
	Типичная форма клена остролистного с зеленой окраской листьев										
2,12/2,88	3,91	0,4678	0,1197	3,907	0,3676	0,1423	2,584	0,385	0,632		
Декоративный сорт клена остролистного с красной окраской листьев											
2,12/2,88	1,71	0,2784	0,1624	1,715	0,1251	0,1969	0,636	0,169	0,279		
Различия между краснолистными и зеленолистными образцами клена											
3,94/6,90	273,42	0,7361	0,0027	273,42	0,8449	0,0016	533,94	0,112	0,112		

¹ Показатели: $F_{05/01}$ — табличное значение критерия Фишера на 5-процентном и на 1-процентном уровне значимости; F_{0n} — опытное значение критерия Фишера; h^2 — доля влияния организованного фактора; \pm s_h^2 — ошибка доли влияния организованного фактора; F_h^2 — критерий достоверности доли влияния организованного фактора; HCP_{05} — наименьшая существенная разность на 5-процентном уровне значимости; D_{05} — критерий Тьюки на 5-процентном уровне значимости; число первичных единиц выборки каждого признака — 50 п. е. в.; всего в дисперсионном комплексе — 100 дата-единиц.

Можно заметить, что расхождения в оценках особей типичной формы клена остролистного, введенных в схему рассматриваемого опыта, достигли уровня существенных различий. Это подтвердили полученные величины критерия Фишера, превысившие минимально допустимый порог как на 5 %-м, так и на 1 %-м уровне значимости, а также оценки наименьшей существенной разности и D-критерия в Тьюки тесте. Напротив, различия в содержании хлорофилла-а клонов одного сорта («Кримсон кинг») не получили подтверждения их существенности. Влияние индивидуальных внутривидовых различий особей семенного происхождения на формирование общего фона фенотипической дисперсии в содержании хлорофилла-а достоверно и достаточно высоко: 46,78 ± 11,97 %.

Список источников

- 1. Бабаев Р. Н., Бессчетнова Н. Н., Бессчетнов В. П. Пигментация листовых пластин представителей рода береза (*Betula* L.) // Лесной вестник ; Forestry Bulletin. 2022. Т. 26, № 3. С. 29–38.
- 2. Пигментный состав листьев тополей в объектах озеленения Нижнего Новгорода / Н. Н. Бессчетнова, В. П. Бессчетнов, А. Д. Сатанова, Н. И. Шубников // Вестник Нижегородского государственного агротехнологического университета. 2023. № 4 (40). С. 13–24.
- 3. Бессчетнова Н. Н., Бессчетнов В. П., Ершов П. В. Генотипическая обусловленность пигментного состава хвои плюсовых деревьев ели европейской // Известия вузов. Лесной журнал. 2019. № 1. С. 63–76.
- 4. Есичев А. О., Бессчетнова Н. Н., Бессчетнов В. П. Видоспецифичность пигментного состава хвои представителей рода лиственница // Хвойные бореальной зоны. 2021. Т. XXXIX, № 4. С. 313–321.
- 5. Содержание и соотношение пластидных пигментов в хвое биоты восточной при интродукции / Б. А. Кентбаева, Е. Ж. Кентбаев, Н. Н. Бессчетнова [и др.] // Хвойные бореальной зоны. 2024. Т. XLII, № 3. С. 13–22.
- 6. Содержание и баланс пластидных пигментов в листовом аппарате облепихи в популяциях юго-востока Казахстана / Б. Б. Арынов, Б. А. Кентбаева, Е. Ж. Кентбаев [и др.] // Вестник Нижегородского государственного агротехнологического университета. 2023. № 4 (40). С. 5–13.
- 7. Бессчетнова Н. Н., Бессчетнов В. П. Пигментный состав хвои саженцев сосны горной и сосны обыкновенной в Нижегородской области // Лесной вестник ; Forestry Bulletin. 2024. Т. 28, № 4. С. 5–18. DOI: 10.18698/2542-1468-2024-4-5-18
- 8. Пигментный состав хвои декоративных форм и сортов туи западной (Thuja occidentalis) в условиях Нижегородской области / М. Ю. Котынова, А. И. Ханявин, Н. Н. Бессчетнова, В. П. Бессчетнов // Вестник Поволжского государственного технологического университета. Сер.: Лес. Экология. Природопользование. 2024. № 2 (62). С. 31–45. DOI: 10.25686/2306-2827.2024.2.31
- 9. Бессчетнова Н. Н., Бессчетнов В. П., Басыгараев О. У. Содержание пигментов в листовом аппарате облепихи крушиновидной в условиях юговостока Казахстана // Вестник Нижегородского государственного агротехнологического университета. 2024 № 3 (43). С. 13–22.