ЭКОЛОГИЧНАЯ ОТДЕЛКА ИЗДЕЛИЙ ИЗ ДРЕВЕСИНЫ

Светлана Борисовна Шишкина¹, Анастасия Павловна Стрекова²

1,2 Уральский государственный лесотехнический университет,

Екатеринбург, Россия

Анномация. В данной статье производится сравнение технических характеристик защитно-декоративных покрытий. Получены сравнительные характеристики лакокрасочных материалов в соответствии со стандартными методиками.

Ключевые слова: экологичная отделка, лакокрасочные материалы, изделия из древесины

Для цитирования: Шишкина С. Б., Стрекова А. П. Экологичная отделка изделий из древесины // Деревообработка: технологии, оборудование, менеджмент XXI век = Woodworking: technologies, equip-ment, management of the XXI century: материалы XX Международного евразийского симпозиума. Екатеринбург: УГЛТУ, 2025. С. 39–45.

Original article

ECOLOGICAL FINISHING OF WOOD PRODUCTS

Svetlana B. Shishkina ¹, Anastasia P. Strekova²

^{1,2} Ural State Forestry Engineering University, Ekaterinburg, Russia

Abstract. The technical characteristics of protective and decorative coatings are compared. Comparative characteristics of paintwork matrials were obtained in accordance with standard methods.

Keywords: ecological finishing, paintwork materials, wood products

For citation: Shishkina S. B., Strekova A. P. (2025) Ekologicheskaya otdelka izdelij iz drevesiny [Ecological finishing of wood products]. Woodworking: technologies, equipment, management of the XXI century [Woodworking: technologies, equipment, management of the XXI century: materials of the XX International eurasian symposium]. Ekaterinburg: USFEU, 2025. P. 39–45 (In Russ).

¹ shishkinasb@m.usfeu.ru

² strecovanasty@gmail.com

¹ shishkinasb@m.usfeu.ru

² strecovanasty@gmail.com

[©] Шишкина С. Б., Стрекова А. П., 2025

Экологичная отделка изделий из древесины — это создание защитного покрытия на древесной подложке безопасными материалами, которые не выделяют вредных веществ, не загрязняют окружающую среду и безопасны для здоровья человека [1].

Натуральными считаются материалы для отделки природного происхождения, которые не подвергались значительной механической или химической модификациям. Такие материалы содержат в себе минимальное количество добавок и примесей, что обеспечивает их экологичность [2].

Также натуральные материалы могут быть как полностью не модифицированными, так и с улучшенными свойствами [3]. Такие материалы сохраняют природную основу и не содержат вредных химических веществ, например, натуральные масла, получаемые путем прессования природного сырья (семян) и последующего отжима, минеральные масла, получаемые из минеральных источников и нефти путем многоэтапной очистки и удалением нежелательных примесей с последующем преобразованием продукта в минеральное масло [4].

Из «химических» материалов самыми безопасными на данный момент считаются акриловые ЛКМ на водной основе [5].

В работе будут использованы технические характеристики акрилового лака для получения сравнительных характеристик исследуемых материалов [6]. Для сравнения были использованы такие материалы, как подсолнечное и оливковое масла, лак акриловый, морилка на водной основе, масло минеральное пищевое, масло минеральное.

Технические характеристики, по которым будет производиться сравнение:

1. Влагопоглощение — это способность древесины поглощать влагу из окружающего воздуха [7]. Определение по ГОСТ Р 56705—2015 «Конструкции деревянные для строительства. Термины и определения».

Способ измерения влагопоглощения ГОСТ 21513—76 заключается в определении массы влаги, поглощенной лакокрасочной пленкой при определенных температуре и времени испытания. Обозначение: ГОСТ 21513—76 «Материалы лакокрасочные. Методы определения водо- и влагопоглощения лакокрасочной пленкой».

2. *Блеск* — это оптическое свойство поверхности лакокрасочного покрытия, характеризующее ее способность зеркально отражать пучки света [8]. Определение по ГОСТ 31975–2017 («Материалы лакокрасочные. Метод определения блеска лакокрасочных покрытий под углом 20°, 60° и 85°»).

Стандарт устанавливает метод определения блеска покрытий, нанесенных на плоские стеклянные и непрозрачные окрашиваемые поверхности без структурных дефектов.

Принцип определения блеска основан на измерении направленного отраженного пучка света. Интенсивность этого пучка света измеряют в определенном угловом поле вокруг угла отражения [9].

В зависимости от степени блеска поверхности образца выбраны следующие углы измерения:

- 20° для высокоглянцевых поверхностей;
- 60° для поверхностей со средним блеском;
- 85° для матовых поверхностей.

Значение блеска указывают в единицах блеска ($Gloss\ Units$, международное обозначение – GU). Не допускается выражать значения блеска в процентах.

3. *Теплостойкость* – способность лакокрасочного покрытия сохранять свои защитные и физико-механические свойства после воздействия высоких температур. ГОСТ 28067–89 «Детали и изделия из древесины и древесных материалов. Метод определения контактной теплостойкости защитно-декоративных покрытий».

Измерение теплостойкости и ЛКП по ГОСТ 28067–89 проводят двумя методами:

«Сухой» метод. На покрытие воздействуют теплом в течение установленного времени (20 мин) и дают визуальную оценку изменениям состояния покрытия. Испытания начинают с температуры 85 °C. Если при первом испытании не появилось дефектов, то температуру постепенно увеличивают: 100 °C, 120 °C, 140 °C, 160 °C и 180 °C.

«Влажный» метод. На покрытие воздействуют теплом и влагой в течение установленного времени и дают визуальную оценку изменениям состояния покрытия. Испытания начинают с температуры 55 °C.

Оценку результатов испытаний проводят по пятибалльной системе:

- 1 балл нет видимых изменений;
- 2 балла едва заметное изменение блеска или цвета;
- 3 балла незначительное изменение блеска или цвета при отсутствии изменения структуры испытуемого покрытия;
- 4 балла четко различимое изменение блеска или цвета, структура покрытия изменена незначительно;
- 5 баллов четко различимые изменения блеска или цвета, структура испытуемого покрытия заметно изменена или разрушена.

За показатель контактной теплостойкости защитно-декоративного покрытия принимают наибольшее значение температур, при которых результаты испытаний оценены в 1 балл.

4. Склерометрическая твердость лакокрасочного покрытия — твердость материала, определенная по ширине царапины, нанесенной на поверхность испытуемого металла режущим инструментом при определенном давлении. Определение твердости производят на образцах, изготовленных из тех же материалов и по тем же технологическим процессам, что и детали. Для проведения испытаний берется один образец [10]. Размер контролируемой поверхности должен быть не менее 70×70 мм.

Повреждения покрытия осуществляют с помощью прибора типа Клемен-Кейля иглой корундовой (ГОСТ 7765–70) с радиусом закругления 0,018 см, длиной 1,5 см или игла типа 1, алмазная (ГОСТ 23936–79).

Ширину царапины (мкм) вычисляют с округлением до 1 мкм по формуле:

$$B = (L_1 - L_2) \cdot \varepsilon \,, \tag{1}$$

где L_1 и L_2 — показания окулярного микрометра соответственно для левой и правой границ царапины в делениях шкалы, мкм;

ε – цена деления барабана окулярного микрометра, мкм.

Испытания повторяют, причем нагрузку выбирают таким образом, чтобы получить канавку шириной от 50–60 мкм. Ширину каждой царапины замеряют в трех точках. Измерения проводят в середине царапины и на расстоянии не менее 1 см от концов. Считают среднее значение.

На рис. 1—4 представлены полученные показатели свойств образцов покрытий экологичных материалов в сравнении с акриловым лаком, где по оси X значения 1, 2, 3, 4, 5 — показатели характеристик масла подсолнечного, масла оливкового, морилки на водной основе, масла минерального пищевого, масла минерального соответственно.

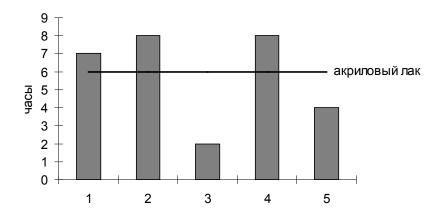


Рис. 1. Сравнение характеристик материалов с акриловым лаком по стойкости к воде (ч)

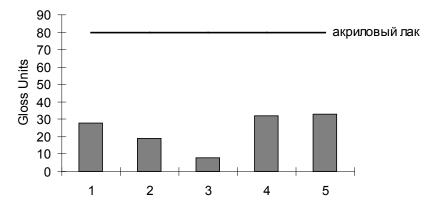


Рис. 2. Сравнение характеристик покрытий по степени блеска GU с акриловым лаком

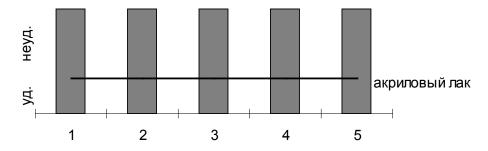


Рис. 3. Сравнение характеристик образцов покрытий с акриловым лаком по теплостойкости

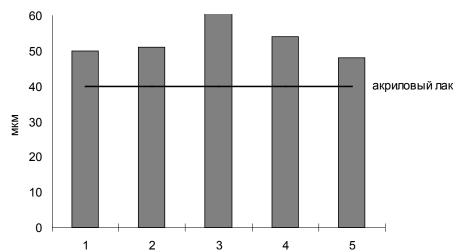


Рис. 4. Сравнение характеристик по твердости лакокрасочного покрытия

Полученные показатели свойств экологичных материалов (рис. 1–4) позволяют сделать вывод, что минеральное масло максимально приближается к показателям акрилового глянцевого лака. Это позволит создать прочное, износостойкое и безопасное покрытие, например, для изделий декоративно-прикладного искусства и детских игрушек [11].

Список источников

- 1. ГОСТ 33095–2014. Покрытия защитно-декоративные на мебели из древесины и древесных материалов. Классификация и обозначения // Кодекс: [сайт]. URL: https://docs.cntd.ru/document/1200120580 (дата обращения: 06.08.2025).
- 2. Дубовская Л. Ю. Технология отделки мебели и столярных изделий. Минск : РИПО, 2019. 295 с.
- 3. Демитрова И. П. Защитно-декоративные материалы и покрытия древесины и древесных материалов. М. ; Вологда : Инфра-Инженерия, 2023. 248 с.

- 4. Колесникова А. А., Краснова В. Ф. Технология и применение полимеров в деревообработке. Йошкар-Ола: Поволжский государственный технологический университет, 2015. 68 с.
- 5. Шепелев А. Ф., Печенежская И. А., Туров А. С. Товароведение и экспертиза древесно-мебельных товаров. Ростов н/Д: Феникс, 2002. 349 с.
- 6. Совина С. В. Технология защитно-декоративных покрытий древесины и древесных материалов. Испытания защитно-декоративных покрытий: методические указания. Екатеринбург: УГЛТУ, 2010. 47 с.
- 7. ГОСТ 21513—76. Материалы лакокрасочные. Методы определения водо- и влагопоглощения лакокрасочной пленкой // Кодекс : [сайт]. URL: https://docs.cntd.ru/document/1200008448 (дата обращения: 06.08.2025).
- 8. ГОСТ 31975–2017. Межгосударственный стандарт. Материалы лако-красочные. Метод определения блеска лакокрасочных покрытий под углом 20°, 60° и 85° // Кодекс: [сайт]. URL: https://docs.cntd.ru/document/1200146789 (дата обращения: 06.08.2025).
- 9. ГОСТ 896–2021. Материалы лакокрасочные. Определение блеска лакокрасочных покрытий. Фотоэлектрический метод // Кодекс : [сайт]. URL: https://docs.cntd.ru/document/1200181451 (дата обращения: 06.08.2025).
- 10. Никитин А. А., Тришин С. П. Технология отделки плитных материалов: лабораторный практикум [Электронный ресурс]. URL: https://mf.bmstu.ru/info/faculty/lt/caf/lt9/uchmet/docs/topm_lab.pdf (дата обращения: 06.08.2025).
- 11. Соколова Е. А. Методы контроля внешнего вида лакокрасочного покрытия // Ярославский государственный технический университет. 2018. № 8. С. 27–29.

Referens

- 1. GOST 33095-2014. Protective and decorative coatings on furniture made of wood and wood materials. Classification and designations // Codex : [website]. URL: https://docs.cntd.ru/document/1200120580 (date of accessed: 08.06.2025).
- 2. Dubovskaya L. Y. Technology of furniture and joinery finishing. Minsk: RIPO, 2019. 295 p.
- 3. Demitrova I. P. Protective and decorative materials and coatings of wood and wood materials. M.; Vologda: Infra-Engineering, 2023. 248 p.
- 4. Kolesnikova A. A., Krasnova V. F. Technology and application of polymers in woodworking. Yoshkar-Ola: Volga Region State Technological University, 2015. 68 p.
- 5. Shepelev A. F., Pechenezhskaya I. A., Turov A. S. Commodity science and expertise of wood and furniture products. Rostov n/A: Phoenix, 2002. 349 p.
- 6. Sovina S. V. Technology of protective and decorative coatings of wood and wood materials. Tests of protective and decorative coatings: methodological guidelines. Ekaterinburg: UGLTU, 2010. 47 p.

- 7. GOST 21513–76. Paint and varnish materials. Methods for determining water and moisture absorption by a paint film // Codex : [website]. URL: https://docs.cntd.ru/document/1200008448 (date of accessed: 08.06.2025).
- 8. GOST 31975-2017. The interstate standard. Paint and varnish materials. The method of determining the gloss of paint coatings at an angle of 20 °, 60 ° and 85 ° // Codex : [website]. URL: https://docs.cntd.ru/document/1200146789 (date of accessed: 08.06.2025).
- 9. GOST 896-2021. Paint and varnish materials. Determination of gloss of paint coatings. Photoelectric method // Codex : [website]. URL: https://docs.cntd.ru/document/1200181451 (date of accessed: 08.06.2025).
- 10. Nikitin A. A., Trishin S. P. Technology of finishing slab materials: laboratory practice [Electronic resource]. URL: https://mf.bmstu.ru/info/faculty/lt/caf/lt9/uchmet/docs/topm_lab.pdf (date of accessed: 08.06.2025).
- 11. Sokolova E. A. Methods of controlling the appearance of paintwork // Yaroslavl State Technical University. 2018. № 8. P. 27–29.