Научная статья УДК 615.32

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ОРГАНИЧЕСКИХ КИСЛОТ В ЛИСТЬЯХ И ЦВЕТКАХ КУПЫРЯ ЛЕСНОГО (ANTHRISCUS SYLVESTRIS (L.) HOFFM)

Кира Владимировна Морозова¹, Дарья Алексеевна Евсеева²

 1,2 Петрозаводский государственный университет, Петрозаводск, Россия 1 mkv25@bk.ru

Анномация. В статье представлены результаты количественного определения органических кислот в листьях и цветках *Anthriscus sylvestris* (L.) Ноffm в разных условиях произрастания. Значительное содержание кислот выявлено в листьях ($21,4\pm0,6\%$) у растений в еловых биотопах, в цветках ($11,1\pm0,8\%$) у растений в прибрежных биотопах.

Ключевые слова: Anthriscus sylvestris (L.) Hoffm, органические кислоты, листья, цветки

Для цитирования: Морозова К. В., Евсеева Д. А. Количественное определение органических кислот в листьях и цветках купыря лесного (Anthriscus sylvestris (L.) Hoffm) // Вигоровские чтения = Vigorovsky readings: материалы Всероссийской (национальной) научно-практической конференции с международным участием, посвященной 75-летию Уральского сада лечебных культур им. профессора Л. И. Вигорова. Екатеринбург: УГЛТУ, 2025. С. 28–32.

Original article

QUANTIFICATITATIVE DETERMINATION OF ORGANIC ACIDS IN LEAVES AND FLOWERS OF *ANTHRISCUS SYLVESTRIS* (L.) HOFFM

Kira V. Morozova¹, Daria A. Evseeva²

^{1, 2} Petrozavodsk State University, Petrozavodsk, Russia

² ev.dariya@gmail.com

Abstract. The results of quantitative determination of organic acids in leaves and flowers of *Anthriscus sylvestris* (L.) Hoffm in different growing conditions are presented in the article. Significant acid content was found in leaves

28

² ev.dariya@gmail.com

¹ mkv25@bk.ru

[©] Морозова К. В., Евсеева Д. А., 2025

 $(21,4\pm0,6\%)$ of plants in spruce biotopes, in flowers $(11,1\pm0,8\%)$ of plants in coastal biotopes.

Keywords: Anthriscus sylvestris (L.) Hoffm, organic acids, leaves, flowers *For citation:* Morozova K. V., Evseeva D. A. (2025) Kolichestvennoe opredelenie organicheskix kislot v list'yax i czvetkax *Anthriscus sylvestris* (L.) Hoffm [Quantitative determination of organic acids in leaves and flowers of *Anthriscus sylvestris* (L.) Hoffm]. Vigorovskie chteniya [Vigorovsky readings]: proceedings of the All-Russian (national) scientific and practical conference with international participation dedicated to the 75th anniversary of the Ural Garden of Medicinal Crops named after Professor L. I. Vigorov. Ekaterinburg: USFEU, 2025. P. 28–32. (In Russ).

Купырь лесной (*Anthriscus sylvestris* (L.) Hoffm) из семейства *Аріасеае* – травянистый малолетник, или многолетник, который размножается вегетативным и преимущественно семенным путем [1]. Этот бореальный евразиатский вид распространен в еловых, часто в прибрежных, и лиственных лесах, на лугах, по берегам, в поселениях в синантропных экотопах (у заборов и дорог, в скверах, парках и др.) [2, 3].

В народной медицине вегетативные органы растений *A. sylvestris* рекомендуются к использованию в качестве успокаивающего, обезболивающего, спазмолитического, противоглистного, противовоспалительного, антибактериального средства [4, 5]. На основании результатов научного эксперимента корни этого вида предложены в качестве источника получения лигнанов для производства противоопухолевых препаратов [6].

В растениях *А. sylvestris* определены разные группы биологически активных веществ, в частности лигнаны, эфирное масло, флавоноиды, органические кислоты, витамины С и группы В, кумарины, стероиды [5–7]. Широкий ареал произрастания в дикорастущем виде, разнообразный химический состав, давнее применение в народной медицине, возможность культивирования [5] делают этот вид перспективным для комплексного исследования и возможности применения в медицинских целях.

Целью исследования стало определение содержания свободных органических кислот в листьях и цветках купыря лесного (*Anthriscus sylvestris* (L.) Hoffm) в разных условиях произрастания.

Исследование выполнено в 2022–2024 гг. в луговых, прибрежных, еловых биотопах в окрестностях г. Петрозаводска (Республика Карелия) и г. Кандалакши (Мурманская область). Листья и цветки срезали секатором во время цветения растений на учетных площадках размером 1 м², заложенных в конкретных зарослях данного вида в исследуемых биотопах. Сырье сушили в хорошо проветриваемой лаборатории без доступа прямых солнечных лучей. Количественное определение содержания свободных органических кислот в пересчете на яблочную кислоту (в %) в абсолютно сухом сырье выполняли титриметрическим методом согласно частной

фармакопейной статье «Плоды шиповника» [8]. Достоверных различий в концентрации органических кислот в органах *A. sylvestris*, собранных в окрестностях городов Петрозаводска и Кандалакши, не установлено, поэтому полученные данные для анализа были объединены в выборки по биотопам.

В прибрежных биотопах в органах *A. sylvestris* определено одинаковое содержание свободных органических кислот (таблица). В еловых биотопах в листьях растений синтезируется значительное количество кислот в отличие от луговых биотопов. Почвы ельников богаты макроэлементами азотом, фосфором, калием и микроэлементами, которые определяют более высокий уровень их трофности, чем на лугах и по берегам водоемов [9]. Кроме того, еловые и прибрежные сообщества с участием *A. sylvestris* характеризуются хорошо увлажненными почвами, что также способствует накоплению кислот.

Содержание свободных органических кислот в листьях и цветках Anthriscus sylvestris (L.) Hoffm

Биотопы	Содержание органических кислот, %	
	Листья	Цветки
Луговые	6,0±0,4	9,2±0,4
Прибрежные	11,1±0,2	11,1±0,8
Еловые	21,4±0,6	9,0±0,6

Достоверных различий в количестве органических кислот в цветках у растений, собранных в ельниках и на лугах, не выявлено. Генеративные органы у *A. sylvestris* менее затенены, чем нижние листья, в которых определяли данную группу биологически активных веществ. В открытых луговых и прибрежных биотопах растения данного вида достигают 1,5 м в высоту, возвышаясь над другими видами. Можно отметить узкий диапазон варьирования величины данного показателя в цветках, чем в листьях.

Таким образом, согласно полученным данным исследованные органы *A. sylvestris* можно рекомендовать в качестве лекарственного растительного сырья для получения органических кислот. Эта группа биологически активных веществ обладает широким спектром фармакологического действия, например, оказывая желчегонное, противовоспалительное, бактерицидное, витаминное действия.

Список источников

1. Ермакова И. М., Сугоркина Н. С. Жизненные формы растений Залидовских лугов Калужской области // Ботанический журнал. 2011. Т. 96, № 3. С. 316–341.

- 2. Иллюстрированный определитель растений Средней России. М. : Товарищество научных изданий КМК / И. А. Губанов, К. В. Киселева, В. С. Новиков, В. Н. Тихомиров // Институт технологических исследований. 2003. Т. 2. 666 с.
- 3. Кравченко А. В. Конспект флоры Карелии. Петрозаводск: Карельский научный центр РАН, 2007. 403 с.
- 4. Пименов М. Г., Клюйков Е. В. Зонтичные (Umbelliferae) Киргизии. М.: Товарищество научных изданий КМК, 2002. 288 с.
- 5. Противоопухолевые соединения купыря лесного (Anthriscus sylvestris (L.) Hoffm) / Я. П. Лебедев, Р. М. Баширова, Р. И. Ибрагимов, А. Г. Мустафин // Медицинский вестник Башкортостана. 2016. Т. 11, N go 5 (65). С. 77–80.
- 6. Лебедев Я. П., Баширова Р. М., Фархутдинов Р. Г. Липофильные соединения корней купыря лесного Anthriscus sylvestris (L.) Hoffm // Известия Уфимского научного центра РАН. 2018. № 3–4. С. 75–79.
- 7. Pharmaceutical assesment of Romanian crops of Anthriscus sylvestris (Apiaceae) / B. S. Velescu, V. Anuţa, G. M. Niţulescu [et al.] // Farmacia. 2017. Vol. 65, № 6. P. 824–831.
 - 8. Государственная Фармакопея СССР. Вып. 2. М.: Медицина, 1989. 400 с.
- 9. Почвы Карелии: геохимический атлас / Н. Г. Федорец, О. Н. Бахмет, А. Н. Солодовников, А. К. Морозов. М.: Наука, 2008. 47 с.

References

- 1. Ermakova I. M., Sugorkina N. S. Life forms of plants of Zalidovsky meadows of the Kaluga region // Botanical Journal. 2011. Vol. 96, № 3. P. 316–341. (In Russ).
- 2. Illustrated identifier of plants of Middle Russia. Moscow: Partnership of scientific editions of KMK / I. A. Gubanov, K. V. Kiseleva, V. S. Novikov, V. N. Tikhomirov // Institute of Technological Research, 2003. Vol. 2. P. 666. (In Russ).
- 3. Kravchenko A. V. Conspectus of the flora of Karelia. Petrozavodsk : Karelian Scientific Center of RAS, 2007. 403 p. (In Russ).
- 4. Pimenov M. G., Kluikov E. V. Umbelliferae of Kyrgyzstan. M. : Partnership of scientific editions of KMK, 2002. 288 p. (In Russ).
- 5. Pro-antitumor compounds of Anthriscus sylvestris (L.) Hoffm / Y. P. Lebedev, R. M. Bashirova, R. I. Ibragimov, A. G. Mustafin // Medical Bulletin of Bashkortostan. 2016. Vol. 11. № 5 (65). P. 77–80. (In Russ).
- 6. Lebedev Y. P., Bashirova R. M., Farkhutdinov R. G. Lipophilic compounds of the roots of Anthriscus sylvestris (L.) Hoffm // Proceedings of the Ufa Scientific Center of the Russian Academy of Sciences. 2018. № 3–4. P. 75–79. (In Russ).

- 7. Pharmaceutical assesment of Romanian crops of Anthriscus sylvestris (Apiaceae) / B. S. Velescu, V. Anuţa, G. M. Niţulescu [et al.] // Farmacia. 2017. Vol. 65, № 6. P. 824–831.
- 8. State Pharmacopoeia of the USSR. Issue 2. M. : Medicine, 1989. 400 p. (In Russ).
- 9. Soils of Karelia: geochemical atlas / N. G. Fedorets, O. N. Bakhmet, A. N. Solodovnikov, A. K. Morozov. M.: Nauka, 2008. 47 p. (In Russ).