МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра энергетики

Ю.В. Путилин В.В. Мамаев

ТЕПЛОПЕРЕДАЧА В ВОДО-ВОДЯНОМ ТЕПЛООБМЕННИКЕ

Методические указания к лабораторной работе № 14 для студентов очной и заочной форм обучения всех специальностей по дисциплине «Теплотехника»

Печатается по рекомендации методической комиссии ЛМФ. Протокол № 1 от 24. сентября 2009 г.

Рецензент – доцент, канд. техн. наук А.И. Сафронов

Методические указания предназначены для студентов очной и заочной форм обучения всех специальностей по дисциплине «Теплотехника». Работа выполняется в соответствии с рабочими программами по данной дисциплине и имеет целью закрепление прослушанного лекционного курса и получение практических навыков проведения экспериментальных исследований и выполнения тепловых расчетов.

В методических указаниях приведены основные теоретические положения об изучаемом процессе, описание экспериментальной установки, методики проведения опытов и обработки результатов экспериментов, контрольные вопросы, а также необходимые для расчетов справочные материалы.

Редактор Е.Л. Михайлова Оператор Г.И. Романова

Подписано в печать 16.03.10.		Поз. 18
Плоская печать	Формат 60х84 1/16	Тираж 100 экз.
Заказ №	Печ. л. 0,7	Цена 4 руб. 00 коп.

Редакционно-издательский отдел УГЛТУ Отдел оперативной полиграфии УГЛТУ

ЦЕЛЬ РАБОТЫ

- 1. Экспериментальное определение тепловой мощности, среднего температурного напора и значений коэффициента теплопередачи в водоводяном теплообменнике типа «труба в трубе».
- 2. Сравнение тепловой эффективности теплообменника при прямоточной и противоточной схемах движения теплоносителей.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Теплообменный аппарат (теплообменник) — это устройство, предназначенное для передачи теплоты от одного теплоносителя к другому. В рекуперативных теплообменниках перенос тепла от греющего теплоносителя к нагреваемому осуществляется через разделяющую их твердую стенку. Этот процесс является сложным теплообменом и называется теплопередачей.

Интенсивность теплопередачи характеризуется значением коэффициента теплопередачи K, $B_T/(M^2 \cdot K)$, численно равным величине теплового потока от одного теплоносителя к другому через поверхность площадью $1 \, M^2$ разделяющей их стенки при разности температур между теплоносителями в один градус. Его величина определяется интенсивностью всех трех процессов, объединяемых понятием «теплопередача», а именно коэффициентом теплоотдачи от греющего теплоносителя к стенке α_1 , термическим сопротивлением стенки R_{cr} и коэффициентом теплоотдачи от стенки к нагреваемому теплоносителю α_2 .

Для плоской стенки

$$K = \frac{1}{1/\alpha_1 + \delta_{cr}/\lambda_{cr} + 1/\alpha_2},$$
(1)

где $\,\delta_{\text{ct}}\,$ - толщина стенки;

 $\lambda_{\rm cr}$ - коэффициент теплопроводности материала стенки;

 $\delta_{_{\text{ст}}}/\lambda_{_{\text{ст}}}=R_{_{\text{ст}}}$ - термическое сопротивление стенки.

Это выражение с достаточной точностью используется и для тонких цилиндрических стенок (труб), если $d_{_{\rm H}}/d_{_{\rm BH}} \le 1,5$.

Тепловой расчет теплообменных аппаратов производится на основе совместного решения уравнений теплового баланса и теплопередачи.

Уравнение теплового баланса. Без учета потерь теплоты в окружающую среду это уравнение запишется как

$$Q = Q_1 = Q_2 \tag{2}$$

где Q - тепловая мощность аппарата;

 ${\bf Q}_{_1}$ - тепловой поток, переданный горячим теплоносителем;

 ${\bf Q}_2$ - тепловой поток, полученный холодным теплоносителем.

Входящие в это уравнение величины Q_1 и Q_2 , кВт, определяются выражениями

$$Q_{1} = G_{1}c_{p_{1}}(t'_{1} - t''_{1}), \tag{3}$$

$$Q_2 = G_2 c_{p_2} (t_2'' - t_2'), \tag{4}$$

в которых G_1 и G_2 — массовые расходы горячего и холодного теплоносителя соответственно, $\kappa \Gamma/c$;

 c_{p_1}, c_{p_2} - массовые теплоемкости горячего и холодного теплоносителя при постоянном давлении, кДж/(кг · K) ;

 t_1', t_2' - температура горячего и холодного теплоносителя на входе в аппарат, $^{\circ}C$;

 $t_1'',\ t_2''$ - температура горячего и холодного теплоносителя на выходе из аппарата, ${}^{\circ}C$.

Уравнение теплопередачи

$$Q = K F \Delta t_{cp} , \qquad (5)$$

где K - коэффициент теплопередачи, $Br/(M^2 \cdot K)$;

F - площадь поверхности теплопередающей стенки, м²;

 $\Delta t_{_{cp}}$ - средняя разность температур теплоносителей (среднелогарифмический температурный напор) в аппарате, $^{\circ}C$.

Для расчета среднего по всей поверхности теплообмена (среднелогарифмического) температурного напора используется выражение

$$\Delta t_{\rm cp} = \frac{\Delta t_{\delta} - \Delta t_{\rm M}}{\ln(\Delta t_{\delta} / \Delta t_{\rm M})} , \qquad (6)$$

где $\Delta t_{_{\delta}}$, $\Delta t_{_{_{M}}}$ - соответственно наибольшая и наименьшая разности температур горячего и холодного теплоносителя на концах аппарата, ${^{\circ}C}$.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Схема опытной установки представлена на рис.1. Ее основным элементом является теплообменник 1 типа «труба в трубе». По внутренней медной трубке длиной 1,1 м и диаметром 18×1 мм проходит горячая вода из сети горячего водоснабжения. Холодная вода из водопроводной сети движется в кольцевом канале, образованном внешней поверхностью медной трубки и внутренней поверхностью наружной стальной трубы длиной 1,0 м и диаметром 38×2 мм. Расходы обоих теплоносителей регулируются запорными вентилями 2 и 3 и устанавливаются преподавателем.

Схема установки позволяет исследовать как прямоточную, так и противоточную схемы движения теплоносителей. В первом случае горячая и холодная вода в теплообменнике движутся в одном направлении, а во втором - во взаимно противоположном. Установка той или другой схемы движения теплоносителей производится путем изменения направления течения горячей воды с помощью пробковых кранов 5, холодная же вода подается в теплообменник в фиксированном направлении.

Объемные расходы горячей и холодной воды измеряются тахометрическими водосчетчиками 6, а температура теплоносителей на входе и выходе из аппарата - лабораторными ртутными термометрами.

ПОРЯДОК ПРОВЕДЕНИЯ ОПЫТОВ

Опыты проводятся в двух режимах, соответствующих двум значениям расхода каждого теплоносителя. В обоих режимах исследования выполняются как для прямоточной, так и для противоточной схем движения теплоносителей. Установка схемы движения производится преподавателем.

- 1. Открыть запорные вентили 2, 3 для подачи горячей и холодной воды в теплообменник 1. Установить первый режим.
- 2. Контролировать установление стационарного теплового режима, о чем свидетельствует достижение постоянных во времени значений температуры обоих теплоносителей на входе и выходе из теплообменника. Для определения этого момента записывать показания соответствующих термометров 4 с интервалом 2-3 мин.
- 3. При установившемся тепловом режиме выполнить измерения расходов горячей и холодной воды и температур обоих теплоносителей.
- 3.1. Для определения расходов записать показания водосчетчика в начале $(n_{_H})$ и в конце $(n_{_K})$ времени измерения τ (3-5 мин). Рассчитать значение расхода, m^3/c , по выражению $V=\frac{\left(n_{_K}-n_{_H}\right)}{\tau}$.

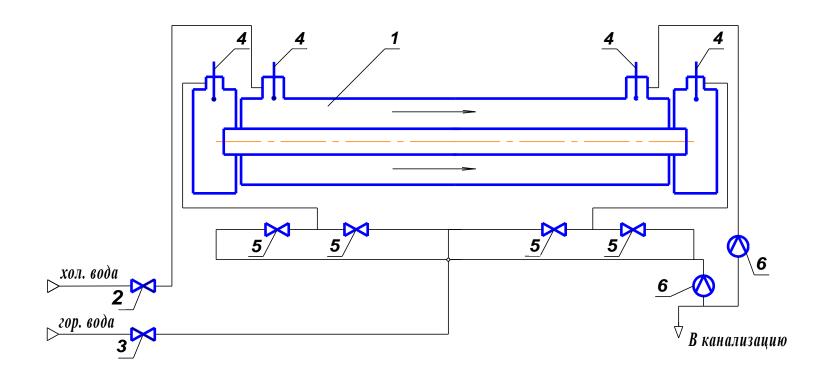


Рис.1. Схема экспериментальной установки:

- 1 теплообменник типа «труба в трубе»; 2 вентиль запорный холодной воды;
- 3 вентиль запорный горячей воды; 4 термометр лабораторный (4 шт.);
- 5 кран пробковый (4 шт.); 6 тахометрический водосчетчик (2 шт.)

- 3.2. Измерение температур теплоносителей производится не менее 3 раз с интервалом 1-2 мин. и вычисляются среднеарифметические значения.
- 4. С помощью пробковых кранов 5 изменить схему движения теплоносителей в теплообменнике на противоположную (прямоток или противоток) и после достижения стационарности теплового потока произвести соответствующие измерения согласно п. 3.
 - 5. Значение измеренных величин внести в табл. 1.
 - 6. Установить второй режим и повторить опыты в соответствии с п.2-5.

МЕТОДИКА ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

1. Определяются массовые расходы горячей и холодной воды по выражениям

$$G_{1} = \rho V_{1}$$
, $G_{2} = \rho V_{2}$.

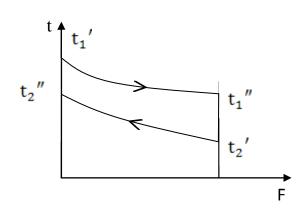
Значения входящей в эти выражения плотности воды ρ принимаются по данным табл. 2 для соответствующих температур горячего и холодного теплоносителей, определяемых как среднее арифметическое между t' и t''.

- 2. Вычисляются значения теплового потока Q_1 и Q_2 по уравнениям (3) и (4). Величина входящей в эти выражения массовой теплоемкости c_p принимается по табл. 2 также для средних между входом и выходом значений температуры воды.
- 3. Рассчитывается средний температурный напор (разность температур) в теплообменнике по формуле (6) с учетом характера изменения температур теплоносителей при разных схемах движения:

для противотока
$$\Delta t_{\delta} = t_1'' - t_2'$$
, $\Delta t_{_{\rm M}} = t_1' - t_2''$ для прямотока $\Delta t_{\delta} = t_1' - t_2'$, $\Delta t_{_{\rm M}} = t_1'' - t_2''$

4. Определяются значения коэффициента теплопередачи К по уравнению (5), в котором в качестве F принимается расчетная площадь теплопередающей стенки медной трубки $F_p = \pi d_p l_p$ где $l_p = 1\,\mathrm{m}$, $d_p = 0.5 (d_{_H} + d_{_{BH}}) = 17\,\mathrm{mm}$.

Причем в случае выполнения условия $Q_1 \approx Q_2$ (с небалансом не более 10-15%) в уравнение (5) в качестве Q подставляется среднеарифметическое между Q_1 и Q_2 значение теплового потока, а при невыполнении баланса значения К рассчитываются отдельно по Q_1 и Q_2 .


5. Результаты расчетов вносятся в табл. 3.

Результаты измерений

Наиманованна валинин г	I pea	КИМ	II режим		
Наименование величины, обозначение, размерность	прямоток	проти-	прямоток	проти-	
		воток		воток	
ГОРЯЧА	Я	В	ОДА		
Показания водосчетчика					
в начале отсчета, n_{1H} , M^3					
в конце отсчета, $n_{1\kappa}$, м ³					
Время отсчета τ ₁ , с					
Объемный расход V_1 , м $^3/c$					
Температура на входе					
t ₁ ', °C					
Температура на выходе					
t ₁ ", °C					
холодн	А Я	В	О Д А		
Показания водосчетчика					
в начале отсчета, n_{2H} , M^3					
в конце отсчета, $n_{2\kappa}$, M^3					
Время отсчета τ2, с					
Объемный расход V_2 , M^3/c					
Температура на входе t_2' , °С					
Температура на выходе					
t ₂ ", °C					

6. Для одного из режимов строятся графики изменения температур горячей и холодной воды по мере их движения в теплообменнике $\mathbf{t} = f(\mathbf{F})$ для прямоточной и противоточной схем

7. Производится оценка тепловой эффективности теплообменника при разных схемах движения теплоносителей.

Таблица 2 Физические свойства воды на линии насыщения

t, °C	0	10	20	30	40	50	60	70	80
ρ , $\kappa \Gamma / M^3$	999,9	999,7	998,2	995,7	922,2	988,1	983,1	977,8	971,8
c_p , кДж/(кг·К)	4,212	4,191	4,183	4,174	4,174	4,174	4,179	4,187	4,195

Таблица 3 Результаты обработки опытных данных

	•					
No	Наименование величины,	I po	ежим	II p	жим	
Π/Π	обозначение, размер-	прямоток	противоток	прямоток	противоток	
	ность					
1	Массовый расход горя-					
_	чей воды G_1 , кг/с					
2	Массовый расход холод-					
	ной воды G_2 , кг/с					
3	Тепловой поток от горя-					
	чей воды Q_1 , к B т					
4	Тепловой поток к холод-					
	ной воде Q_2 , к B т					
5	Максимальный темпера-					
	турный напор Δt_{δ} , °C					
6	Минимальный темпера-					
	турный напор $\Delta t_{_{M}}$, ${^{\circ}C}$					
7	Среднелогарифмический					
	температурный напор					
	Δt_{cp} , °C					
8	Расчетная площадь по-					
	верхности теплообмена					
	F_p, M^2					
9	Коэффициент теплопере-					
	дачи $\mathrm{Br}/\!\left(\mathrm{M}^2\cdot\mathrm{K}\right)$					
	K_1 (расчет по Q_1)					
	K ₁ (pacter no Q ₁)					
	K_2 (расчет по Q_2)					
	К (расчет по Q _{ср})					

СОДЕРЖАНИЕ ОТЧЕТА

Отчет по работе должен включать:

- 1) наименование и цель работы;
- 2) принципиальную схему установки;
- 3) результаты измерений (см. табл. 1);
- 4) результаты обработки опытных данных (см. табл. 3);
- 5) графики изменения температур теплоносителей при прямотоке и противотоке в одном из режимов;
- 6) оценку эффективности теплообменника при разных схемах движения теплоносителей.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется рекуперативным теплообменным аппаратом?
- 2. Какой тепловой процесс называется стационарным?
- 3. Что характеризует коэффициент теплопередачи?
- 4. Какова размерность и физический смысл коэффициента теплоперелачи?
 - 5. Назовите основные уравнения теплового расчета теплообменника.
- 6. Что называется среднелогарифмическим температурным напором теплообменника?
- 7. При какой схеме движения теплоносителей тепловая эффективность аппарата выше?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Королев, В. Н. Тепломассообмен [Текст] / В.Н. Королев, В.В. Мамаев. Екатеринбург: УГЛТА, 2000. 189 с.
- 2. Осипова, В.А. Экспериментальное исследование процессов теплообмена [Текст] / В.А. Осипова. М.: Энергия, 1979. 320 с.
- 3. Теплотехника [Текст] / под ред. А.П. Баскакова. М.: Энергоатомиздат, 1991. 224 с.