

И.О. Заплатина Ю.Л. Чепелев

ОПРЕДЕЛЕНИЕ НАПРЯЖЕННОСТИ ГРАВИТАЦИОННОГО ПОЛЯ ЗЕМЛИ ПРИ ПОМОЩИ МАЯТНИКА

МИНОБРНАУКИ РОССИИ

ФГБОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики

> И.О. Заплатина Ю.Л. Чепелев

ОПРЕДЕЛЕНИЕ НАПРЯЖЕННОСТИ ГРАВИТАЦИОННОГО ПОЛЯ ЗЕМЛИ ПРИ ПОМОЩИ МАЯТНИКА

Методические указания к лабораторным работам по физике для студентов всех специальностей очной и заочной форм обучения

Екатеринбург 2013

Рекомендовано методическо Протокол № 5 от 25 апреля 2012		
Рецензент: доктор технических н	аук Крюк В.И.	
р и пп		
Редактор Черных Л.Д. Оператор компьютерной верстки	Карпова Е.В.	
Подписано в печать 27.12.13		Поз. 54
Плоская печать	Формат $60 \times 84^{-1}/_{16}$	Тираж 10 экз.
Заказ №	Печ. л. 0,46	Цена руб. коп.

Редакционно-издательский отдел УГЛТУ Отдел оперативной полиграфии УГЛТУ

Кинематика гармонических колебаний

Колебательным называется любое движение или изменение состояния системы материальных точек, которое характеризуется определенной степенью повторяемости во времени значений какой-либо физической величины, определяющей данное движение или состояние.

Движение называется периодическим, если значения физических величин, изменяющихся в процессе колебаний, повторяются через одинаковые промежутки времени. Простейшим видом периодических колебаний являются гармонические колебания.

Гармоническими называются колебания, при которых какая-либо величина изменяется во времени по закону синуса или косинуса:

$$\begin{cases} x = A\sin(\omega t + \varphi_0) \\ x = A\cos(\omega t + \varphi_0) \end{cases}$$
 (1)

причем А и о не изменяются с течением времени.

В уравнении: х – смещение колеблющейся величины или материальной точки от положения равновесия;

А – амплитуда колебаний: наибольшее отклонение от положения равновесия;

 $\omega t + \phi_0 - \varphi$ аза колебаний: скалярная физическая величина, определяющая смещение колеблющейся точки в данный момент времени;

 ϕ_0 – начальная фаза колебаний в момент времени t = 0;

ω – круговая (циклическая) частота колеблющейся точки.

Если фаза колебания увеличивается или уменьшается на 2π , то х принимает прежнее значение, т.е. если:

$$x_1 = A \sin (\omega t_1 + \phi_0)$$
 и $x_2 = A \sin (\omega t_2 + \phi_0)$, $x_1 = x_2$, или $A \sin (\omega t_1 + \phi_0) = A \sin (\omega t_2 + \phi_0)$, то $(\omega t_1 + \phi_0) - (\omega t_2 + \phi_0) = 2\pi$.

Отсюда $\omega(t_2-t_1)=2\pi;\ t_2-t_1-$ наименьшее время, по истечении которого повторяются значения всех физических величин, характеризу-ющих колебание. Это время называется периодом колебаний Т. За время периода совершается одно колебание.

Следовательно,
$$\omega T = 2\pi$$
,

$$\varpi = \frac{2\pi}{T},\tag{2}$$

НО

$$\frac{1}{T} = v \,, \tag{3}$$

где ν – частота колебаний: число полных колебаний, совершаемых за единицу времени.

Сравнивая формулы (2) и (3), получим $\omega = 2\pi v$, т.е. циклическая частота численно равна числу колебаний, совершаемых за 2π секунд.

При гармонических колебаниях гармонически колеблется не только смещение х, но и скорость и ускорение. Учитывая, что

$$v = \frac{dx}{dt}$$
, a $a = \frac{dv}{dt}$,

дифференцируем х, получаем выражение для υ:

$$\upsilon = \frac{dx}{dt} = \omega A \cos(\omega t + \varphi_0), \qquad (4)$$

а когда мы возьмем производную по о, получим выражение для а:

$$a = A\omega^2 \sin(\omega t + \varphi_0) = -\omega^2 x, \qquad (5)$$

где $A\omega$ – амплитуда скорости; $A\omega^2$ – амплитуда ускорения.

Динамика гармонических колебаний

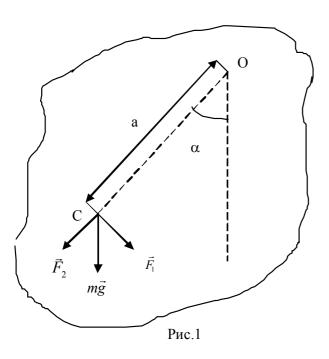
В соответствии со вторым законом Ньютона сила, вызывающая гармонические колебания, равна:

$$F = ma. (6)$$

Сравнив формулы (5) и (6), получим:

$$F = -m\omega^2 A \sin(\omega t + \varphi_0) = -m\omega^2 x. \tag{7}$$

Сила, действующая на колеблющуюся точку, прямо пропорциональна смещению и всегда направлена к положению равновесия, поэтому ее



часто называют возвращающей силой.

Примером сил, удовлетворяющих уравнению (7), являются упругие силы. Силы, имеющие иную природу, чем упругие силы, но также удовлетворяющие условию (7), называются квазиупругими:

$$F_1 = -kx, (8)$$

где $m\omega^2$ – коэффициент квазиупругой силы; $k = m\omega^2$.

<u>Физическим маятником</u> называется абсолютно твердое тело, совершающее колебания

под действием силы тяжести вокруг горизонтальной оси O, не проходящей через центр тяжести тела. На рис. 1 изображено сечение физического маятника плоскостью, перпендикулярной к его оси вращения O и проходящей через его центр масс C. Расстояние OC равно а. На рис. 1 F_1 и F_2 — составляющие силы тяжести mg, F_1 — возвращающая сила. При малых значениях угла α F_1 = — $mgsin\alpha$ = — $mg\alpha$. Знак минус указывает, что сила действует в направлении, противоположном смещению. Величина возвращающей силы в данном примере является частным случаем квазиупругой силы F_1 = -kx.

При малых углах отклонения колебания физического маятника являются гармоническими. Возвращающий момент, создаваемый силой \mathbf{F}_1 , равен:

$$M = -mga\alpha$$
.

Основное уравнение динамики для маятника запишется следующим образом:

$$M = J\varepsilon$$
, $M = J\frac{d^2\alpha}{dt^2}$,

где J – момент инерции маятника; є – угловое ускорение.

$$-mga\alpha = J\frac{d^2\alpha}{dt^2},$$

или

$$J\frac{d^2\alpha}{dt^2} + mga\alpha = 0.$$

Решения этого дифференциального уравнения:

$$lpha=lpha_0\sin(\omega t+arphi_0)\;,\;\;\omega=\sqrt{\frac{mga}{J}}\;,\;$$
 ho $\;\omega=\frac{2\pi}{T}\;,\;$ $T=2\pi\sqrt{\frac{J}{mga}}\;.\;$

отсюда

Период малых колебаний физического маятника можно определить по формуле

$$T = 2\pi \sqrt{\frac{J}{mga}} \ .$$

 $Mame матическим маятичесми маятичесми материальная точка, подвешенная на невесомой и нерастяжимой нити. На рис. 2 видим, что возвращающая сила <math>\mathbf{F_1}$ является одной из составляющих силы тяжести и равна $F = -mg \sin \alpha = -mg \sin \frac{x}{l}$, при малых углах $\alpha F = -mg \frac{x}{l}$, т.е. вновь видим, что $\mathbf{F_1}$ — квазиупругая сила, т.е. при малых углах отклонения колебания математического маятника являются гармоническими.

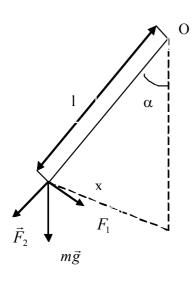


Рис.2

По второму закону Ньютона $F_1 = ma$, но

$$a = \frac{d^2x}{dt^2}$$
, тогда $m\frac{d^2x}{dt^2} + mg\frac{x}{l} = 0$.

Решения этого дифференциального уравнения:

$$x = A\sin(\omega t + \varphi_0), \quad \omega = \sqrt{\frac{g}{l}}.$$

Учитывая, что $\omega = \frac{2\pi}{T}$, период колебаний математическо маятника будет равен:

$$T = 2\pi \sqrt{\frac{l}{g}} \,, \tag{9}$$

$$g = \frac{4\pi^2 l}{T^2} \,. \tag{10}$$

Для определения g воспользуемся моделью математического маятника в виде небольшого металлического шарика на нерастяжимой нити длиной l.

Ход работы

- 1. Измерить длину маятника 1 не мене трех раз.
- 2. Измерить время t N = 10 полных колебаний маятника пять раз.
- 3. Определить периоды колебаний маятника для каждого измерения:

$$T = \frac{t}{N} = \frac{t}{10}.$$

- 4. Рассчитать средние значения Δl_{cp} , l_{cp} , T_{cp} , ΔT_{cp} .
- 5. По формуле (10) вычислить дер.
- 6. Рассчитать относительную ошибку є по формуле (16).
- 7. Вычислить $\Delta g = g_{cp} \epsilon$.
- 8. Записать окончательный результат в виде:

$$g = (g_{cp} \pm \Delta g) \text{ m/c}^2$$
.

По закону всемирного тяготения сила взаимодействия \mathbf{F} между двумя материальными точками массами m_1 и m_2 определяется по формуле:

$$F = \gamma \frac{m_1 m_2}{r^2},\tag{11}$$

где $\gamma = 6,62\ 10^{-11}\ {\rm H\ m^2/kr^2}$ – гравитационная постоянная; m_1 и m_2 – массы взаимодействующих материальных точек; r – расстояние между точками.

Если тело находится на поверхности Земли (M – масса Земли; R – радиус Земли), то:

$$F = \gamma \frac{Mm}{R^2}. (12)$$

С другой стороны, на тело, находящееся в гравитационном поле Земли действует сила тяжести:

$$F_{\tau} = mg. (13)$$

Поскольку роль силы тяжести играет гравитационная сила, то:

$$F = F_T, \qquad \gamma \frac{Mm}{R^2} = mg,$$

окончательно

$$g = \gamma \frac{M}{R^2} \,. \tag{14}$$

Выражение (14) позволяет оценить массу Земли:

$$M = \frac{gR^2}{\gamma} \,. \tag{15}$$

Относительную ошибку є вычисляем по формуле (10):

$$\ln g = \ln 4 + 2 \ln \pi + \ln l - 2 \ln T,$$

$$\frac{\Delta g}{g} = \frac{\Delta l}{l} + 2 \frac{\Delta T}{T}.$$
(16)

Результаты занесем в таблицу.

№	1	Δl	T	ΔΤ	g
1					
2					
3					
4					
5					
Средние	l_{cp}	Δl_{cp}	T_{cp}	ΔT_{cp}	$g_{\rm cp}$

Контрольные вопросы

- 1. Что называется гармоническим колебанием?
- 2. Какой маятник называется физическим? математическим?
- 3. Как определяется период колебаний физического и математического маятников?