Лесопромышленный комплекс

твердых лиственных пород, таких как дуб, бук, то время сушки может увеличиваться до нескольких месяцев (по результатам опытных сушек согласно руководящим техническим материалам).

Сушка тех же самых пород и сечений (дуб, бук) в вакуумных сушилках проводится за сравнительно короткий промежуток времени. По результатам опытных сушек, проведенных в условиях

производства, сушка древесины красного дуба толщиной 50 мм в вакуумной сушилке от начальной влажности 67 до конечной 7 % составила 88 ч. Продолжительность конвективной сушки от начальной влажности 57 до конечной 8 % составила 63 дня при средней скорости сушки 0,78 % влажности в сутки. Таким образом, продолжительность вукуумной сушки пиломатериалов крас-

ного дуба в 17 раз меньше, чем конвективной* (рисунок).

Исходя из вышесказанного можно сделать следующие выводы по данной проблеме: современные производства требуют более усовершенствованных способов сушки и применение вакуумных сушильных камер позволит обеспечить предприятия качественным сухим пиломатериалом за сравнительно небольшой период времени.

УДК 54.056: 674.816: 674-419.3

С.В. Смирнов, Г.В. Киселева (S.V. Smirnov, G.V. Kiseleva) (Уральский государственный лесотехнический университет, Екатеринбург)

HEOPГАНИЧЕСКИЕ СВЯЗУЮЩИЕ ДЛЯ ДРЕВЕСИНЫ, ОБЛАДАЮЩИЕ СВОЙСТВАМИ АНТИПИРЕНОВ И АНТИСЕПТИКОВ (INORGANIC BINDING FOR THE WOOD, POSSESSING FIRE RESISTANCE AND ANTISEPTIC PROPERTIES)

Изучены особенности синтеза и свойства бесцветных металлофосфатных связующих, которые могут быть использованы для получения фанеры и древесных пресс-масс, обладающих высокой огнестойкостью и биоцидными свойствами.

Features of synthesis and property colorless metal-phosphate binding which can be used for reception of plywood and the wood pressing mix possessing high fire resistance and antiseptics properties are investigated.

Кислые растворы солей ортофосфорной кислоты с катионами металлов, средние соли которых образуют малорастворимые соединения, относятся к классу неорганических полимеров. Они находят применение в качестве связующих, клеевых материалов и основы для красок и покрытий различного назначения. Основные преимущества неорганических полимеров на основе металлофосфатов по сравнению со связующими, имеющими органическую природу, заключаются в использования их водных растворов и в негорючести применяемых материалов. Это обусловило применение металлофосфатов в составе связующих для древесных пресс-масс и защитно-декоративных покрытий конструкций, выполненных из различных материалов [1–5].

Средние и низкоосновные фосфаты двух- и трёхвалентных металлов относятся к малорастворимым соединениям, обладающим свойствами керамических материалов. Неорганические полимерные фосфаты делятся на полифосфаты, имеющие линейное строение фосфат-анионов, метафосфаты с кольцеобразным (циклическим) расположением PO_4^{3-} и ультрафосфаты с сетчатой, разветвленной структурой PO_4^{3-} . Поскольку в нерас-

творимых полимерных фосфатах невозможно выделить молекулярные структуры соединений, их можно рассматривать как смешанные оксиды, например, $Al_2O_3 \cdot P_2O_5$ в случае ортофосфата алюминия $AlPO_{4}$ или $3MgO\cdot Al_{2}O_{3}\cdot 2P_{2}O_{5}$ для ортофосфата магния-алюминия $Mg_{3}Al_{2}(PO_{4})_{4}$. Нерастворимые фосфаты двух- и трехвалентных металлов проявляют высокую стойкость в водных растворах, что позволяет использовать их в экологически чистых технологиях. В качестве примера можно привести применение кальций-фосфатной керамики для изготовления имплантантов костной ткани [6].

^{*} Горяев А.А. Современные вакуумные лесосушильные камеры // Механическая обработка древесины: реф. информ. М.: ВНИПИЭИЛеспром, 1985. С. 29–30.

Лесопромышленный комплекс

Кислые фосфаты двухтрёхвалентных металлов, в отличие от средних, обладают сравнительно высокой растворимостью. Их растворы обладают свойствами клеев и используются в качестве неорганических связующих, физико-химические свойства которых и особенности полимеризации определяются водородными связями [7, 8]. Образование полимерных структур сопровождается дегидратацией одно- или двухзамещённых гидрофосфатов металлов, которая усиливается при нагревании. После высыхания (обезвоживания) металлофосфаты образуют практически нерастворимые в воде пленки с полимерной природой химических связей. Использование термообработки на стадии обезвоживания связующих повышает их химическую прочность и водостойкость.

Ранее была показана возможность использования алюмохромофосфатных связующих в технологии древесных пресс-масс и фанеры [9, 10]. Опытные образцы изделий из древесины, полученные специалистами кафедры механической обработки древесины УГЛТУ с использованием неорганических связующих, не поддерживали горение даже при помещении их в пламя спиртовки. Присутствие соединений хром (III) в составе связующих обеспечивает биоцидные свойства древесных материалов на их основе, однако ограничивает области использования, вследствие несоблюдения санитарно-гигиенических нормативов, если в процессе эксплуатации возможен контакт с людьми и животными. Соединения хрома(III) имеют характерную зелёную окраску, что также ограничивает применение алюмохромофосфатных связующих при производстве изделий различного назначения.

В данной работе приводятся результаты исследования бесхро-

мовых металлофосфатных зующих, предназначенных получения негорючих древесностружечных плит и фанеры. Отличительной особенностью исследованных связующих является отсутствие окраски, что позволяет придавать необходимый цвет изделий на их основе путем введения в композиции кислотостойких пигментов. В качестве соединений, не обладающих оптической активностью в видимом диапазоне электромагнитного спектра, использовались кислые фосфаты алюминия, магния и цинка. Сырьём для получения магнийцинкалюмофосфатных связующих служили соответствующие оксиды или гидроксиды металлов и термическая фосфорная кислота (табл. 1).

При разработке технологии магнийцинкалюмофосфатных связующих варьировались соотношение компонентов (табл. 2) и температура процесса. В основе технологии лежат реакции растворения смеси оксидов магния, цинка и гидроксида алюминия в избытке ортофосфорной кислоты:

$$Al(OH)_3 + 3H_3PO_4 = Al(H_2PO_4)_3 + 3H_2O,$$
 (1)

$$MetO + 2H_3PO_4 = Met(H_2PO_4)_2 + 2H_2O,$$
 (2)
где $Met = Mg, Zn.$

Заданный объём концентрированной H_3PO_4 заливался в обогреваемый химический реактор, выполненный из кислотостой-кого материала, и нагревался до

320-325 К. Одновременно стехиометрическое количество порошкообразных оксидов магния или цинка смешивалось с небольшим объёмом воды до получения консистенции типа густой сметаны и вводилось небольшими порциями при механическом перемешивании в реактор до полного растворения. Далее стехиометрическое количество гидроксида алюминия вводилось интенсивно (но не слишком большими порциями) в полученный раствор при механическом перемешивании до полного растворения. На этой стадии происходил саморазогрев смеси. По окончании растворения всех компонентов раствор кипятился при 380-390 К в течение двух часов.

Синтезированные связующие представляют собой прозрачные густые жидкости, плотность которых составляет 1610 – 1750 кг⋅м-3. Устойчивость растворов, содержащих до восьми моль H_2PO_4 , в расчёте на моль магния, составляет 20 суток. При увеличении содержания $H_{3}PO_{4}$ выше 11 моль и при частичной замене MgO, имеющего основной характер, на амфотерный ZnO устойчивость растворов связующих повышается. При хранении этих растворов в герметичной таре при комнатной температуре более пяти месяцев образуется белый кристаллический осадок ортофосфатов магния и алюминия. Осветлённый

Таблица 1

Характеристика исходных материалов
для получения металлофосфатных связующих

Наименование сырья	Нормативный документ	Массовая доля основного компонента, %	
Кислота ортофосфорная термическая техническая марки Б, I сорт – H_3PO_4	ГОСТ 10678-76	73 – 78	
Гидрат окиси алюминия – $Al(OH)_3$	ГОСТ 11841-66	95,0 – 98,	
Оксид магния – <i>MgO</i>	ГОСТ 4526-67	97,0 – 98,0	
Оксид цинка марки «ч» – ZnO	ГОСТ 10262-73	Не менее 99	

Таблица 2

Лесопромышленный комплекс

раствор сохраняет свойства связующего.

Технологическим параметром, который использован для контроля состава связующего в процессе его получения и использования, является массовая доля фосфатов в пересчёте на P_2O_5 . Содержание фосфатов в растворах определялось фотоэлектроколориметрическим методом с использованием молибдата аммония. Значения оптической плотности растворов измерялись при длине волны 597 нм (красный фильтр) и толщине поглощающего слоя 10 мм. Раствором сравнения служила разбавленная H_3PO_4 по ГОСТ 4212-76. Массовая доля P_2O_5 в синтезированных связующих, состав которых представлен в табл. 2, варьировалась в пределах 42,5 – 48,5 %.

Применение металлофосфатных связующих в составе композиций древесных пресс-масс предполагает использование разбавленных растворов с требуемыми по технологии значениями вязкости. Разбавленные водой растворы магнийцинкалюмофосфатных связующих готовились аналогично концентрированным связующим, путем добавления необходимого количества воды на стадии смешения её с оксидами магния и цинка. Содержание связующих в растворах изменялась от 15 % до 40 % в пересчёте на массовую долю P_2O_5 .

Для оценки устойчивости разбавленных растворов магнийцинкалюмофосфатных связующих определялось соотношение водорастворимых соединений магния и алюминия после 7 суток и после 6 месяцев хранения образцов в герметичной таре при комнатной температуре (табл. 3). Отмечается повышение устойчивости исследованных образцов при хранении с увеличением содержания дигидрофосфат-ионов в связующем. Наблюдается также незначительное снижение устойчивости водных растворов при уменьшении массовой доли связующего. Частичное разложение связующего в разбавленных растворах проявляется в увеличении массового отношения MgO: AlO_{1.5},

которое связано с гидролизом катионов и образованием малорастворимых соединений магния. В результате частичного разложения ухудшения эксплуатационных свойств растворов связующих не происходит.

Соотношение исходных материалов для металлофосфатных связующих

	Количество исходных компонентов, моль				
Химическая формула связующего	Ме	etO	11(OH)	II DO	
сылзующего	MgO	ZnO	$Al(OH)_3$	H_3PO_4	
$MetAl(H_2PO_4)_5$	0.8 - 1.0	0,2-0	1,0	5,0	
$MetAl_2(H_2PO_4)_8$	0.8 - 1.0	0,2 - 0	2,0	8,0	
$MetAl_3(H_2PO_4)_{11}$	0,8 – 1,0	0,2 – 0	3,0	11,0	
$MetAl_5(H_2PO_4)_{17}$	0.8 - 1.0	0,2 - 0	5,0	17,0	
$MetAl_{10}(H_2PO_4)_{32}$	0,8 - 1,0	0,2 - 0	10,0	32,0	

Таблица 3 Изменение соотношения магния и алюминия в магнийалюмофосфатных связующих в зависимости от срока хранения в пересчёте на массы оксидов магния и алюминия

Массовая доля P_2O_5 , %		15	20	25	30	35	40	
$\begin{array}{ c c c c c }\hline & & & & & & & & \\\hline OI & & & & & & & & \\\hline OI & & & & \\\hline OI & & & & \\\hline OI & & $	Ma Al (H DO)	7 сут	0,72	0,85	0,77	0,75	0,79	0,85
	$MgAi(H_2FO_4)_5$	6 мес	1,30	0,82	0,79	0,87	0,96	0,86
	7 сут	0,36	0,39	0,41	0,43	0,44	0,45	
	$MgAl_2(\Pi_2PO_4)_8$	6 мес	0,75	0,55	0,49	0,52	0,42	0,44
ние	$MgAl_{2}(H_{2}PO_{4})_{8}$ $MgAl_{3}(H_{2}PO_{4})_{11}$	7 сут	0,27	0,27	0,28	0,31	0,32	0,34
оше		6 мес	0,40	0,32	0,36	0,38	0,36	0,37
Отн	$MgAl_5(H_2PO_4)_{17}$	7 сут	0,21	0,24	0,23	0,22	0,18	0,18
		6 мес	0,23	0,23	0,24	0,21	0,24	0,23

Заключение

Использование бесцветных магнийцинкалюмофосфатных связующих в составе композиций древесных пресс-масс и в технологии фанеры позволяет заменить окрашенные в зелёный цвет токсичные хромалюмофосфатные связующие. При этом снижается токсичность применяемых материалов и улучшаются эксплуатационные свойства получаемых изделий. Разработанная технология позволяет полу-

чать разбавленные водой растворы магнийцинкалюмофосфатных связующих и подбирать оптимальные составы для композиций древесных пресс-масс и фанеры, обладающих биоцидными свойствами и огнестойкостю. Применение оксида магния и гидроксида магния в технологии неорганических связующих позволяет использовать местное недефицитное сырьё и промышленные отходы.

Лесопромышленный комплекс

Библиографический список

- 1. Смирнов С.В., Мухин Н.М., Смирнова Т.В. Повышение огнестойкости древесных пресс-масс // Технология древесных плит и пластиков. Свердловск: УГЛТА, 1991. С. 73–76.
- 2. Смирнов С.В., Киселёва Г.В., Побединский В.В. Использование защитных покрытий в технологии строительных материалов из древесины и фанеры // Деревообработка: технологии, оборудование, менеджмент XXI века: тр. II междунар. евразийского симпозиума. Екатеринбург: УГЛТУ, 2007. С. 137–140.
- 3. Петров А.А., Киселёва Г.В. Химические особенности получения металлофосфатных связующих, применяемых для защиты металлов от коррозии // Экология и научно-технический прогресс: матер. 7 междунар. науч.-практ. конф. студ., аспирантов и молодых ученых. Пермь: ПГТУ, 2008. С. 193–195.
- 4. Защита изделий из древесины от биоповреждений с помощью металлофосфатных связующих / Д.Ю. Катеринкин, О.М. Подковыркина, С.В. Смирнов, В.Б. Ивакин // Экология и научно-технический прогресс: матер. 6 междунар. науч.-практ. конф. студ., аспирантов и молодых ученых. Пермь: ПГТУ, 2007.
- 5. Подковыркина О.М., Смирнов С.В., Побединский В.В. Неорганические покрытия для изделий из древесины на основе солей ортофосфорной кислоты // Деревообработка: технологии, оборудование, менеджмент XXI века: тр. II междунар. евразийского симпозиума. Екатеринбург: УГЛТУ, 2007. С. 87–90.
 - 6. Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. М.: Наука, 2005.
- 7. Русаков Д.А. Синтез, кристаллическая структура и свойства сложных кислых фосфатов MI(MII)- и MIII-катионов (MIII = Al, Ga, Fe, Sc и In): дис. ... канд. хим. наук: 02.00.01 / Русаков Дмитрий Александрович. М., 2008. 200 с.
- 8. Филаретов А.А. Синтез и кристаллическая структура новых сложных кислых и основных фосфатов MIII-катионов (MIII = Sc, Fe, Ga, In): дис. ... канд. хим. наук: 02.00.01 / А.А. Филаретов. М., 2004. 252 с.
- 9. Подковыркина О.М., Смирнов С.В., Середа Б.П. Получение металлофосфатных связующих из отходов, образующихся при очистке водных растворов от хрома (VI) // Современные проблемы экологии и безопасности: тр. Третьей Всерос. науч.-техн. Интернет-конф. Ч. 1. Тула: ТГУ, 2007. С. 167–168.
- 10. Исследование локального окружения ионов хрома в фосфатных связующих для древесных пресс-масс / С.В. Смирнов, Б.П. Середа, Н.М. Мухин [и др.] // Технология древесных плит и пластиков. Свердловск: УГЛТА, 1991. С. 87–94.

УДК 674.8

Ю.И. Ветошкин, Е.В. Валова, И.С. Мельниченко (Y.I. Vetoshkin, E.V. Valova, I.S. Melnichenko) (Уральский государственный лесотехнический университет, Екатеринбург)

ТЕПЛОИЗОЛЯЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ МАЛОЭТАЖНОГО ДОМОСТРОЕНИЯ (THERMAL INSULATION COMPOSITE MATERIAL FOR LOW-RISES RESIDENTIAL BUILDING CONSTRUCTION)

Рассматривается теплоизоляционный материал на основе древесных отходов для каркасно-панельного домостроения, приведены физико-механические свойства разработанного и подобных материалов.

Wood waste – based thermal insulation composite material for frame and panel construction and physical and mechanical properties of such kind materials are considered in the article.

Проблема жилья в России, судя по всему, будет решена еще не скоро. Сегодня общая потребность населения страны в жилой площади составляет 1570 млн м², и для ее удовлетворения требуется

увеличить жилищный фонд страны на 46 % [1]. Ученые и представители строительных компаний считают, что малоэтажное строительство является приоритетным путем решения этого жилищного

вопроса, а наиболее эффективно возведение каркасно-панельных домов.

Стеновые каркасные элементы изготавливаются в промышленных условиях (рис. 1). Преимущество