Электронный архив УГЛТУ

Вывод. Результаты расчета при регулярной сетке КЭ приняты как наиболее точные. Максимальное отклонение результатов наблюдается в расчете балочной модели. Но это компенсируется быстротой расчетов и простотой модели. В SolidWorks также получены удовлетворительные результаты.

Библиографический список

- 1. Чигарев А.В., Кравчук А.С., Смалюк А.С. ANSYS для инженеров: справ. пособие. М.: Машиностроение, 2008.
- 2. Каплун А.Б., Морозов Е.М., Олферьева М.А. ANSYS в руках инженера: практич. руководство. М.: Едиториал УРСС, 2003. 272 с.

УДК 621.865.8

Асп. Ф.Ф. Дахиев Рук. Л.Т. Раевская, А.В. Швец УГЛТУ, Екатеринбург

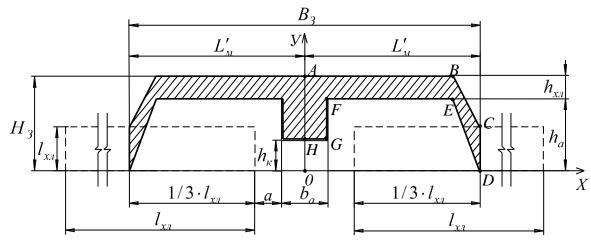
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАБОЧЕЙ ЗОНЫ ПОГРУЗОЧНО-РАЗГРУЗОЧНЫХ ОПЕРАЦИЙ МАНИПУЛЯТОРА ПРИ ХЛЫСТОВОЙ ЗАГОТОВКЕ*

Машины манипуляторного типа имеют несколько степеней свободы, определяемых кинематическими парами, обеспечивающими поступательное или вращательное движение звеньев. Поступательные степени свободы реализуются при телескопическом выдвижении стрелы или рукояти, вращательные — при повороте стойки, стрелы и рукояти относительно стрелы [1, 2]. В табл. 1 приведены возможные степени подвижности отдельных звеньев манипулятора.

Таблица 1 Возможные степени подвижности манипуляторов

No॒	Стрела	Рукоять		
1	Вращается и выдвигается	Вращается и выдвигается		
2		Вращается и не выдвигается		
3		Не вращается и выдвигается		
4		Не вращается и не выдвигается		

^{*} Работа выполнена при финансовой поддержке Фонда содействия развитию малых форм предприятий в научно-технической сфере в рамках программы «Старт-2011».


Окончание табл.1

No	Стрела	Рукоять			
5		Вращается и выдвигается			
6	Размастоя и на вименетотоя	Вращается и не выдвигается			
7	Вращается и не выдвигается	Не вращается и выдвигается			
8		Не вращается и не выдвигается			
9	На размастая и ручирую стая	Вращается и выдвигается			
10		Вращается и не выдвигается			
11	Не вращается и выдвигается	Не вращается и выдвигается			
12		Не вращается и не выдвигается			
13	Не вращается и не выдвигается	Вращается и выдвигается			
14		Вращается и не выдвигается			
15		Не вращается и выдвигается			
16		Не вращается и не выдвигается			

Рабочий орган также может иметь несколько вращательных степеней свободы относительно соответствующих координатных осей.

При выполнении погрузочно-разгрузочных, сортировочно-штабелевочных и транспортно-переместительных операций лесные грузы перемещаются в определенных областях, называемых рабочими зонами. Рабочая зона представляет собой часть пространства, в котором перемещается рабочий орган при всех возможных положениях звеньев. Вид рабочей зоны определяется в том числе и набором степеней подвижности. В представленной работе получены параметры рабочей зоны при погрузочноразгрузочных операциях, выполняемых с хлыстами.

При погрузке хлыстов в лесовозные автопоезда размеры рабочей зоны зависят от ширины автопоезда b_a , высоты автопоезда h_a , высоты штабеля хлыстов h_{u} , длины хлыстов $l_{x\pi}$, максимального диаметра хлыста $h_{x\pi}$ и расстояния между автопоездом и штабелем a. На рисунке показан вид рабочей зоны.

Рабочая зона на погрузке хлыстов в лесовозные автопоезда

Электронный архив УГЛТУ

Для уточнения формы и размеров рабочей зоны при погрузке хлыстов в лесовозные автопоезда определим координаты экстремальных точек описываемой зоны. Соответствующие координаты приведены в табл. 2.

Таблица 2 Координаты экстремальных точек рабочей зоны

Коор- дината	Точка							
	A	В	С	D	E	F	G	Н
X	0	$\frac{b_a}{2} + \frac{l_{x\pi}}{3}$	$\frac{b_a}{2} + \frac{l_{xn}}{3} + a$	$\frac{b_a}{2} + \frac{l_{xn}}{3} + a$	$\frac{b_a}{2} + \frac{l_{xn}}{3}$	$\frac{b_a}{2}$	$\frac{b_a}{2}$	0
у	$h_a + h_{x_{\mathcal{I}}}$	$h_a + h_{x_{\mathcal{I}}}$	h_{u}	0	h_a	h_a	h_{κ}	$h_{\scriptscriptstyle K}$

Следовательно, можно определить высоту H_3 и ширину рабочей зоны B_3 . Из рисунка найдены соотношения для этих параметров, которые можно записать в виде

$$H_3 = h_a + h_{x_{\mathcal{I}}}, \tag{1}$$

$$B_{_{3}} = b_{_{a}} + 2a + \frac{2}{3}l_{_{X_{7}}}.$$
 (2)

Выбирая интервал (в метрах) наиболее часто встречаемых значений для b_a , h_a , $h_{x\eta}$, a, $l_{x\eta}$: $3.0 \le h_a \le 4.0$; $0.1 \le h_{x\eta} \le 1.0$; $2.5 \le b_a \le 3.0$; $0 \le a \le 2.0$; $10.0 \le l_{x\eta} \le 30.0$, получим для H_3 и B_3 после постановки этих значений в формулы (1), (2) $3.1 \le H_3 \le 5.0$; $9.2 \le B_3 \le 27.0$.

При погрузке сортиментов в лесовозные автопоезда размеры рабочей зоны находятся в зависимости от ширины автопоезда b_a , высоты автопоезда h_a , высоты штабеля h_u , ширины штабеля b_u , максимального диаметра сортимента h_c и расстояния между автопоездом и штабелем a. Вид рабочей зоны и размеры будут другими.

Библиографический список

- 1. Проектирование манипуляторов лесных машин: учеб. пособие / Ю.Ю. Герасимов, В.С. Сюнев, А.П. Соколов, С.А. Кильпеляйнен. Петрозаводск: Изд-во ПетрГУ, 2006. 92 с.
- 2. Белянин П.Н. Кинематические схемы, системы и элементы промышленных роботов. М.: Машиностроение, 1992. 191 с.