Электронный архив УГЛТУ

Обобщая вышесказанное, можно сделать вывод, что для снижения себестоимости работы автотранспорта, увеличения влияния положительных факторов от установки на автопоезд гидравлического манипулятора и ослабления недостатков, необходимо определять оптимальные параметры и схемы комплектования лесовозных поездов.

Библиографический список

- 1. Смирнов М.Ю. Повышение эффективности вывозки лесоматериалов автопоездами. Йошкар-Ола: МарГТУ, 2003. 280 с.
- 2. Шегельман И.Р. [и др.]. Вывозка леса автопоездами. Техника, технология, организация: учеб. пособие для студ. высш. учеб. заведений / под ред. И.Р. Шегельмана. СПб.: ПРОФИКС, 2008. 304 с.

УДК 628.01.001.2

Студ. С.А. Киселев Рук. Н.Н. Черемных УГЛТУ, Екатеринбург

УСТАНОВОЧНЫЕ ВИНТЫ В ЛЕСНОМ МАШИНОСТРОЕНИИ

В инженерной графике (разд. «Машиностроительное черчение») студенты традиционно знакомятся с конструкцией болтов, гаек, шпилек, шайб, шплинтов, штифтов. Однако такие резьбовые изделия, как установочные винты, остаются вне поля внимания будущих бакалавровинженеров. Знакомство с источниками [1, 2, 3, 4, 5, 6] и реальными конструкциями машин и механизмов лесного комплекса показывает, что вышеназванные изделия широко представлены в отрасли.

Содержание данной статьи составляют реферативные материалы из вышеуказанных источников, а также конкретных разработок конструкций из отрасли.

Общеизвестно, что установочные винты применяют по своему основному назначению для осевой и радиальной фиксации деталей (шестерён, шкивов, звёздочек, барабанов, рукояток управления одной или обеих полумуфт одновременно при цилиндрических концах валов), деталей переключающих устройств в многоскоростных зубчатых механизмах (к примеру, окорочного оборудования).

Рис. 1 даёт общую информацию о разнообразии конструкций установочных винтов. Они отличаются разнообразием завертных элементов и фиксирующих концов. Известный авиаконструктор (автор [2]) клас-

сифицирует их на 2 основных вида: нажимные (рис. 1, I-V) и врезные (рис. 1, VI-X).

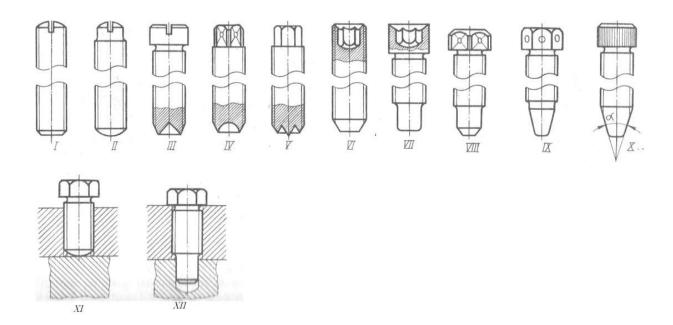


Рис. 1.

У первой группы контакт между деталью и валом (редко – осью) происходит посредством трения при силовом поверхностном контакте фиксирующего торца винта и поверхности вала (рис. 1, XI). Врезные винты обеспечивают более надежную (позитивную) фиксацию по причине входа конца винта в специально просверленное в валу для этой цели отверстие.

Исполнение торцов винтов бывает плоскими (рис. 1, I); в виде сферы (рис. 1, II); с концевыми шипами (рис. 1, III), увеличивающими деформацию смятия на поверхности вала.

Недостатки нажимных винтов: довольно слабая фиксация, нарушение центрирования детали относительно оси вала при силовой затяжке их.

Конструкции винтов (рис. 1, IV, V) стопорятся лучше из-за силовой затяжки; однако с течением времени необходима подтяжка их из-за смятия резьбы и мест контакта.

Для специальной осевой фиксации деталей или сборочных единиц (барабанов, туеров, звездочек) эти винты не применяют. Основное их назначение — зафиксировать деталь в произвольном осевом положении, а для передачи крутящего момента обязательно наличие в соединении шпонки или шлицев.

На рис. 2 даны примеры осевой фиксации зубчатых колес нажимными винтами - нажим винта на вал, на шпонку и (случай III) фиксация с двух сторон кольцами, в которых ввернуты винты.

Электронный архив УГЛТУ

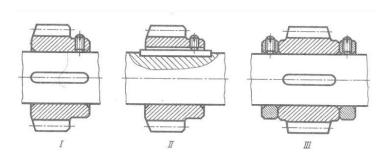
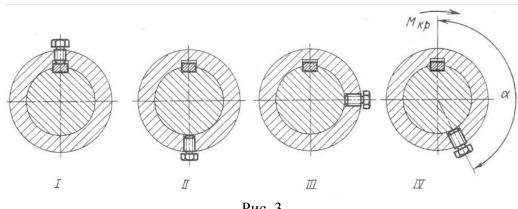
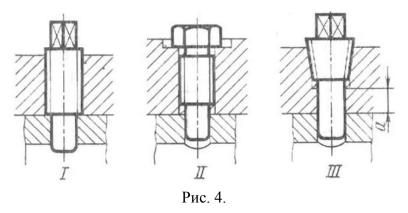


Рис. 2.

Расположение винтов относительно шпонки также учитывается опытными конструкторами [2]. Так на рис. 3 из четырех способов установки нажимных винтов наиболее предпочтителен IV.

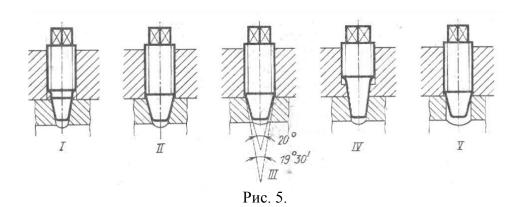

Рис. 3.

Рис. 4 демонстрирует способы установки врезных винтов с цилиндрическим концом. Случай 1 обладает недостатком: винт, упираясь резьбой в тонкостенную втулку (нажимная деталь) может последнюю деформировать. Во 2 и 3 случаях этого не может произойти, так как винты, установленные в упор завёртного конца (в первом случае - торец шестигранной головки, во втором – по причине конической резьбы).

Наиболее надежны соединения винтами с коническими фиксирующими хвостовиками (рис. 5).

Электронный архив УГЛТУ

Примеры использования установочных винтов в будущих курсовых проектах по основам конструирования (деталям машин) студент встретит в [3, рис. 16.10; рис. 16.24 и т.д.], в [4, ЦТБ - 01.01.00.00.00 СБ], а также в атласах [5, 6]

Библиографический список

- 1. Крайнев А.Ф. Детали машин: словарь-справочник. М.: Машиностроение, 1992.- 480 с.
- 2. Орлов П.И. Основы конструирования: справочно-методическое пособие. М.: Машиностроение, 1988. Т. 2, 542 с.
- 3. Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин. М.: Высшая школа, 1985, 416 с.
- 4. Шабалин Л.А., Виноградов В.Ф. Приводы машин лесного комплекса: учеб. пособие (атлас) по деталям машин. Екатеринбург, УГЛТУ, 2006, -111 с.
- 5. Виноградов В.Ф., Шабалин Л.А. Краны для лесных грузов. Атлас конструкций. Екатеринбург, УГЛТУ, 2001, 124 с.
- 6. Черемных Н.Н., Арефьева О.Ю. Альбом чертежей для деталирования оборудования лесопромышленного комплекса. Екатеринбург, УГЛТУ, 2010, 135 с.

УДК 630.36

Асп. С.В. Никулин, А.В. Кочуров Рук. С.В. Будалин УГЛТУ, Екатеринбург

ОПРЕДЕЛЕНИЕ ТРУДОЕМКОСТИ ТО И РЕМОНТА ЛЕСОВОЗНЫХ АВТОМОБИЛЕЙ

Представим удельную трудоемкость ТО и ремонта автомобилей на первом году эксплуатации в виде регрессионной модели [1]: