

Рис. 1. Изменение показателя текучести расплава полиэтилена с различным содержанием модифицирующей добавки при облучении

Рис. 2. Изменение предела прочности при растяжении полиэтилена с различным содержанием модифицирующей добавки в ходе облучения

Библиографический список

- 1. Проблемы утилизации и переработки полимеров.- [Электронный ресурс].- http://articles.pakkermash.ru/show art.php?art=215
- 2. Пластиковая упаковка не должна жить вечно. -[Электронный ресурс] (http://article.unipack.ru/23419)
- 3. Ухарцева И.Ю. Саморазлагающиеся полимерные упаковочные материалы/И.Ю.Ухарцева// Технологии переработки и упаковки.-2007.-№2.-С.30-33.
- 4. Грасси Н. Деструкция и стабилизация полимеров: Пер. с англ. / Н. Грасси, Дж. Скотт. М.: Мир, 1988.- 446 с.

Данков А.С., Филонов А.А.

(ВГЛТА, г. Воронеж, РФ) dankov-as@yandex.ru

ИССЛЕДОВАНИЕ СПОСОБНОСТИ ДРЕВЕСИНЫ ДУБА К ГНУТЬЮ В ЗАВИСИМОСТИ ОТ РАЗЛИЧНЫХ ТЕМПЕРАТУРНО-ВЛАЖНОСТНЫХ УСЛОВИЙ

OAK BENDING ABILITY IN DEPEND ON DIFFERENT TEMPERATURE-HUMIDITY CONDITIONS

В традиционной технологии гнутье массивной древесины осуществляется при влажности 25-30% и температуре заготовки 100°С. При таком сочетании режимных параметров древесина обладает наилучшей способностью к гнутью.

Однако во многих ситуациях нет необходимости в гнутье древесины с такой высокой влажностью, так как она обуславливает длительный технологический процесс гнутья из-за стабилизационной сушки.

Известно, что стабилизация формы заготовок достигается при влажности ниже 15% [1]. Однако нет сведений о минимальной влажности при гнутье, достаточной для полной фиксации формы.

В литературных источниках также отсутствует информация о способности к гнутью древесины при различных температурно-влажностных условиях. Между тем, такие сведения были бы крайне полезны в целях оптимизации параметров гнутья для деталей различного назначения. Например, при гнутье задней ножки стула используется отношение h/R=1/23. При гнутье же дубовых заготовок по традиционной технологии это отношение составляет 1/4. Очевидно, что резерв для снижения влажности в целях оптимизации процесса здесь велик.

В связи с выше изложенным, возможность снижения влажности при гнутье изучалась в двух направлениях:

- 1) определялась минимальная влажность, при которой еще возможна стабилизация приданной заготовкам формы;
- 2) исследовалась способность древесины к гнутью в зависимости от различных температурно-влажностных условий.

Ранее была исследована способность древесины дуба фиксировать приданную форму в зависимости от различных температурно-влажностных условий при гнутье. Данная зависимость представлена на рисунке 1.

Рисунок 1 — Графики зависимости относительной величины изменения стрелы прогиба (стабильности приданной формы) от температуры T_{cp} при различных уровнях влажности W_{κ}

Из графика следует, что с увеличением температуры нагрева приданная образцам форма стабилизируется при меньшей влажности. Так при гнутье древесины с влажностью 10 % полное закрепление формы произойдет при нагреве до 114 °C. Полная стабилизация формы достигается также при W_k =8% и T_{cp} =114 °C и вызвана наложением термозамороженной деформации, так как стабилизационная сушка здесь отсутствовала.

C целью исследования зависимости $h/R=f(W_\kappa,T_{cp})$ для древесины дуба были предприняты активные эксперименты.

Испытания проводились на дубовых образцах с размерами $20 \times 20 \times 350$ мм, изготовленных в соответствии с требованиями ГОСТ 16483.21. Для приведения влажности древесины к необходимой по плану использовалась климатическая камера.

Экспериментальная установка для исследования способности к гнутью представлена на рисунке 2.

Рисунок 2 – Установка для гнутья на разный радиус кривизны

Методика заключалась в следующем. Образцы, имеющие влажность в соответствии с уровнями в таблице 1, нагревались в СВЧ-печи по разработанным режимам [2] до заданных температур. Затем осуществлялось гнутье на гнутарной установке в стальной шине. Изгиб производился в радиальной плоскости. За величину минимального радиуса гнутья принималось значение радиуса, на котором все образцы серии могли быть изогнуты без возникновения дефектов гнутья (складок, разрывов). В каждой серии испытывалось по 10 основных образцов.

Таблица – Значения и уровни факторов униформ-ротатабельного плана

Изимонаранна фактора	Уровни варьирования				
Наименование фактора	-α	-1	0	+ 1	+ α
Влажность (W _к),%	8	10	14	18	20
Температура (Т _{ср}), °С	80	86	100	114	120

С целью представления полученных данных в более наглядном виде вместо отношения h/R находилось обратное отношение R/h.

Для получения уравнения регрессии сразу в натуральных показателях использовалась программа Statistica 6.0.

Уравнение регрессии имеет следующий вид:

$$\frac{R}{h} = 73,69817 - 2,3514W_{\kappa} - 0,80815T_{cp} - 0,00291W_{\kappa}^{2} + 0,00346T_{cp}^{2} + 0,01786W_{\kappa}T_{cp}$$

Графическая интерпретация полученного уравнения представлена на рисунке 3.

Из рисунка видно, что для всех уровней влажности с ростом температуры способность к гнутью ухудшается, причем при более высокой влажности это снижение происходит более интенсивно. Это связано с тем, что сочетание высокой температуры и влажности достигается в результате длительного нагрева образцов с высокой начальной влажностью. При этом наблюдается снижение прочности и, как следствие, потеря устойчивости анатомическими элементами древесины при гнутье.

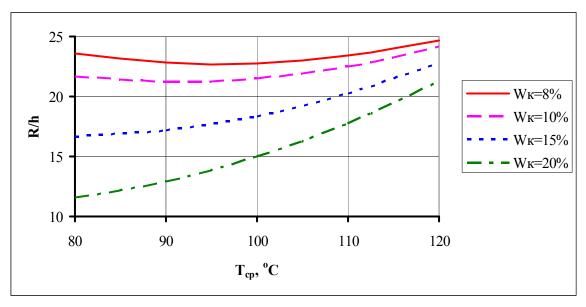


Рисунок 3 — Графики зависимости способности древесины дуба к гнутью от температуры его нагрева T_{cp} при различных величинах влажности образцов W_{κ}

Одним из качественных показателей гнутых деталей является величина стрелы прогиба [1]. Отклонение от заданной стрелы прогиба не должно превышать ± 3 мм. Данному значению на рисунке 1 соответствует величина относительного изменения стрелы прогиба f=6%.

Используя рисунки 1 и 3, можно рекомендовать следующие температурновлажностные условия при гнутье различных заготовок:

- для задней ножки стула (h/R=1/23) $W_{\kappa}=10\%$, $T_{cp}=105-113$ °C;
- для спинки стула (h/R=1/35) W_к=8%, T_{cp}=105-113°C.

Промышленное применение указанных режимов с СВЧ-нагревом позволит резко сократить продолжительность технологического процесса гнутья в целом, снизит количество шин и шаблонов, задействованных при гнутье.

Библиографический список

- 1. Справочник мебельщика [Текст] / под ред. В. П. Бухтиярова. М.: МГУЛ, $2005.-600~\mathrm{c}.$
- 2. Филонов, А. А. Использование СВЧ-печи для нагрева дубовых образцов до высоких температур [Текст] / А. А. Филонов, А. Н. Чернышев, А. С. Данков // Деревообр. пром-сть. -2008. N21. С. 19-21.

Завьялов А.Ю., Совина С.В.

 $(УГЛТУ, Екатеринбург, P\Phi)$ sovinasv@e1.ru

КЛЕЕВЫЕ СИСТЕМЫ ДЛЯ ПРОИЗВОДСТВА КЛЕЕНОГО СТЕНОВОГО БРУСА

ADHESIVE SYSTEMS FOR MANUFACTURING GLULAM

Клеевой материал для производства стенового бруса должен быть водостойким, технологичным в применении, обеспечивать требуемую производительность пресса. К сожалению, отечественных клеев для клееных деревянных конструкций в настоящее

время практически нет, и производители вынуждены использовать клеи зарубежных компаний.

Для проведения классического эксперимента были выбраны следующие клеевые системы: меламиномочевиноформальдегидная (ММФ) система Akzo Nobel Каскомин 1255 с отвердителем 7555 и ЭПИ система Akzo Nobel Касколит 1989 с отвердителем 1993 концерна «Akzo Nobel». Благодаря своим техническим характеристикам они выгодно отличаются от конкурентных клеевых материалов.

Проверка качества клеевых соединений проводилась путем испытания образцов на расслаивание после обработки их водой и последующего высушивания образца при высокой температуре согласно японским стандартам JAS 235 и JAS 234.

В качестве испытания выбран японский стандарт JAS 235. Обусловлено это тем, что данный стандарт не требуют наличие специального оборудования и может быть использован на любом производстве. Требуется наличие только сушильного шкафа с принудительной вентиляцией воздуха. Данный стандарт применяется для испытания несущих конструкций. Это позволит проверить заявленную производителями возможность использовать данные клеевые системы для изготовления несущих деревянных клееных конструкций [1].

Методика проведения исследований представлена в таблице 1.

Таблица 1 – Испытания на расслаивание согласно японским стандартам JAS 235 и JAS 234

Вид испытаний	JAS 235 (для несущих конструкций)	JAS 234 (для нене- сущих конструкций)					
Метод 1 (испытание на расслоение при замачивании в холодной воде)							
Замачивание в холодной воде (10 - 25 °C), ч.	24	6					
Выдержка в сушильном шкафу, ч.	$24 (70 \pm 3 ^{\circ}\text{C})$	$18 (40 \pm 3 ^{\circ}\text{C})$					
% расслоений на обеих торцевых поверхностях	≤ 5	≤ 10					
Общая длина расслоений не должна превышать	≤ 1/4 ширины поперечного сечения	≤ 1/3 ширины поперечного сечения					
В общую длину расслоения не включаются	естественные трещины древесины, сучки и другие дефекты	естественные трещины древесины, сучки и другие дефекты					
Метод 2 (испытание на расслоение при замачивании в кипящей воде)							
Кипячение в воде (100 °C), ч.	4	4					
Охлаждение в воде (10 – 25 °C), ч.	1	1					
Выдержка в сушильном шкафу $(70 \pm 3 ^{\circ}\text{C})$, ч	24	18					
% расслоений на обеих торцевых поверхностях	≤ 5	≤ 5					
Общая длина расслоений не долж-	≤ 1/4 ширины попе-	≤ 1/3 ширины попе-					
на превышать	речного сечения	речного сечения					
В общую длину расслоения не включаются	естественные трещины древесины, сучки и другие дефекты	естественные трещи- ны древесины, сучки и другие дефекты					

Согласно стандарту JAS 235 из клееного бруса, склеенного по параметрам представленным в таблице 2, выпиливаются 6 образцов длиной 75 мм.

Относительное расслаивание определяется по формуле 1:

Относительное расслоение =
$$\frac{Cymma \ \partial лин \ paccлоений на обоих торцах}{Cymma \ \partial лин \ клеевых линий на обоих торцах} \cdot 100 (%),$$
 (1)

По результатам проведенных исследований на предприятии ООО «Егоршинский лес» можно сделать следующие выводы:

Все образцы клееных элементов (стеновой брус) соответствуют требованиям JAS 235 по показателю величины расслоения при испытании на вымачивание в холодной и кипящей воде.

Образцы № 1 - 6 (клеевая система Akzo Nobel Каскомин 1255 с отвердителем 7555) показали меньшую величину относительного расслаивания по сравнению с образцами № 7 - 12 (клеевая система Akzo Nobel Касколит 1989 с отвердителем 1993).

При замачивании в холодной воде образцы с № 1 - 6 (клеевая система Akzo Nobel Каскомин 1255 с отвердителем 7555) показали средний результат 1,85 %, а при замачивании в кипящей воде 1,58 %.

При замачивании в холодной воде образцы с № 7 - 12 (клеевая система Akzo Nobel Касколит 1989 с отвердителем 1993) показали среднее значение расслаивания 2,59 %, а при замачивании в кипящей воде – 2,83 %.

Основные преимущества клеевой системы Akzo Nobel Каскомин 1255 с отвердителем 7555:

- 1. минимальное время прессования по сравнению с другими ММФ системами;
- 2. время технологической выдержки 3 часа;
- 3. благодаря раздельному нанесению клея и отвердителя возможна дополнительная экономия и снижение затрат, так как не требуется остановка на промывку системы;
- 4. высокие показатели стойкости к длительным нагрузкам и, как следствие, возможность производить стеновой брус с качеством несущих деревянных клееных конструкций.

В связи с имеющимися преимуществами данная клеевая система рекомендована предприятию ООО «Егоршинский лес» для производства клееного стенового бруса.

Библиографический список

1. Сирота, И. Метод испытаний на расслаивание – ускоренный метод испытаний на старение [Текст] / Сирота, И. [и др.] // Дерево.RU, 2005, №5, С 120-124.

Королькова И.В.

(УГЛТУ, г. Екатеринбург, РФ) korolkova96@gmail.com

ЭНЕРГЕТИКА В ЛЕСНОМ КОМПЛЕКСЕENERGETICS IN WOOD-BASED INDUSTRIES

В лесной и деревообрабатывающей промышленности основным видом вторичных энергетических ресурсов являются неиспользованные или непригодные для технологической переработки древесные отходы. Это обусловлено наличием в отрасли зна-