- при при высыхании связующих они действуют как защитные покрытия, практически не вымываемые конденсирующейся на поверхности изделий влагой;
- механические характеристики обработанных материалов практически не изменяются.

Таким образом, металлофосфатные связующие могут достаточно эффективно использоваться в технологии строительных материалов в качестве защитно-декоративных покрытий древесины.

Библиографический список

- 1. Смирнов С.В., Мухин Н.М., Смирнова Т.В. Повышение огнестойкости древесных пресс-масс. В сб.: Технология древесных плит и пластиков. Свердловск: изд. УГЛТА, 1991. С. 73-76.
- 2. Смирнов С.В., Середа Б.П., Мухин Н.М. и др. Исследование локального окружения ионов хрома в фосфатных связующих для древесных пресс-масс. В сб.: Технология древесных плит и пластиков. Свердловск: изд. УГЛТА, 1991. С. 87-94.

Крюк В.И., Ветошкин Ю.И., Яцун И.В., Мялицин Ан. В.

(УГЛТУ, г. Екатеринбург, РФ)

КОМПОЗИЦИОННЫЕ РЕНТГЕНОЗАЩИТНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ДРЕВЕСИНЫ И ДРЕВЕСНЫХ ОТХОДОВ

COMPOSITION X-RAY PROTECTION MATERIALS ON THE WOOD AND WOOD WASTE BASIS

Применяемые средства защиты имеют различные как защитные, так и эксплуатационно-декоративные свойства. Одни недостаточно долговечны, другие неудобны в процессе использования и монтажа, третьи – недостаточно привлекательны по цвету, фактуре, четвертые – дороги.

В связи с чем, разработка новых защитных материалов простых в применении, менее дорогих и с высокими дизайнерскими свойствами – является важной проблемой в модернизации и оснащении рентген–кабинетов и других специализированных помещений.

На отечественный рынок предлагается гамма разнообразных материалов, которые способны выполнять роль защитных материалов, данные представлены на рисунке 1.

Рекомендуемые материалы либо имеют в своем составе экологически вредный свинец и его соединения, либо имеют в качестве наполнителя дорогостоящие технологические и защитные добавки, либо сказывается их не технологичность изготовления и применения.



Рисунок 1 – Классификация рентгенозащитных материалов

На кафедре «Механической обработки древесины» ведутся научно – исследовательские, поисковые и экспериментальные работы по разработке защитно - декоративных материалов на основе древесины, направленные на исключение вредного свинца и его производных из композиции, а также улучшения экологической обстановки и комфортности помещений, в которых рекомендуется применение подобных материалов. Разработанные конструкции композиционных материалов, согласно патентных исследований, не имеют аналогов в мире.

Краткая информация о разработанных материалах:

1. Фанотрен A - композиционный материал на основе шпона. Материал обладает достаточной эффективностью ослабления рентгеновского и мягкого гамма-излучения с энергией < 100 кэВ. Эквивалентная толщина свинца 0,028 см. На материал получен патент № 10638 от 16 августа 1999 г. (рис. 2).

Рисунок 2 – Фанотрен А

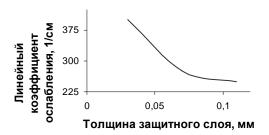


График 1 – Зависимость линейного коэффициента ослабления рентгеновского излучения от толщины защитного слоя

2. Фанотрен Б – композиционный материал на основе шпона. Материал обладает достаточной эффективностью ослабления рентгеновского и мягкого гамма-излучения с энергией < 200 кэВ. Эквивалентная толщина свинца 0,103 см. На материал получен патент № 19791 от 10 октября 2001 г. (рис. 3).

Рисунок 3 – Фанотрен Б

График 2-3ависимость фотометрической контрастности пленки Фанотрена ${\mathsf F}$ от содержания наполнителя

3. Фанотрен В – композиционный материал на основе фанеры. Эквивалентная толщина свинца 1 мм. На материал получен патент № 10461 от 24 мая 2004 г. (рис. 4).

Защитные свойства соответствуют свинцовому эквиваленту

Рисунок 4 – Фанотрен В

4. Фанотрен Г – композиционный материал на основе фанеры (рис. 5).

Рисунок 5 – Фанотрен Г

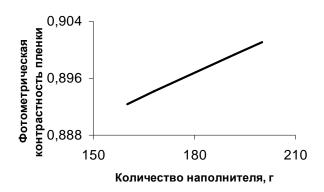


График 3 — Зависимость фотометрической контрастности пленки Фанотрена Γ от количества наполнителя

5. Плитотрен A – композиционный материал, аналог древесностружечной плиты. Свинцовый эквивалент материала составляет 0.3 мм свинца. Композиционный ма-

териал обладает высокими защитными свойствами от рентгеновского излучения. Степень защиты можно регулировать в зависимости от требований заказчика (рис. 6).

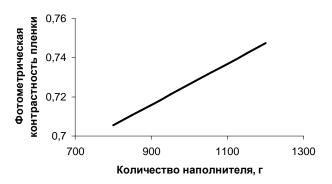


Рисунок 6 – Плитотрен А

График 4 – Зависимость фотометрической контрастности пленки Плитотрена A от количества наполнителя

6. Плитотрен Б – композиционный материал аналог древесностружечной плиты (рис. 7).

Рисунок 7 – Плитотрен Б

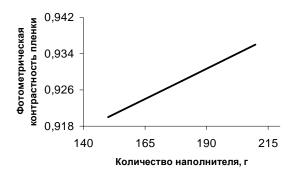


График 5 – Зависимость фотометрической контрастности пленки Плитотрена Б от количества наполнителя

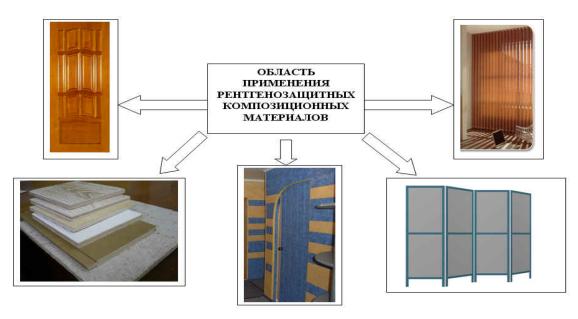


Рисунок 8 – Область применения рентгенозащитных материалов

Разработанные материалы обладают высокими физико-механическими показателями и являются конструкционным, что позволяет применять их (рисунок 8) в изготовлении необходимых конструкций мебели, дверей, стеновых панелей, ширм и других конструкций специального назначения. Материал можно облицовывать и производить отделку разнообразными лакокрасочными материалами, тем самым, улучшая его внешний вид.

Разработанные материалы обладают оригинальными конструктивнодекоративными особенностями, хорошими свойствами для монтажа, хорошо обрабатываются на деревообрабатывающем оборудовании.

Рогожникова И.Т., Новоселов В.Г. (УГЛТУ, г. Екатеринбург, $P\Phi$) nauka-les@yandex.ru

КРИТЕРИИ, МЕТОДЫ И СРЕДСТВА ОПРЕДЕЛЕНИЯ НАДЕЖНОСТИ ТЕХНОЛОГИЧЕСКИХ СИСТЕМ ДЕРЕВООБРАБОТКИ ПО ПАРАМЕТРУ КАЧЕСТВА «ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ»

THE DEFINITION MEANS OF WOODWORKING TECHNOLOGY SYSTEMS RELIABILITY ON THE QUALITY INDEX "THE SURFACE ROUGHNESS". CRITERIA, METHODS AND MEANS

Согласно ГОСТ 15467-79 [1], качество продукции – совокупность свойств продукции, обусловливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением. Следовательно, качество продукции деревообработки – это не только степень насыщенности их пороками древесины, как принято считать в лесопилении и отраслях, потребляющих пиломатериалы, а также совокупность потребительских (эксплуатационных) свойств, таких как размер, форма, прочность, шероховатость обработанной поверхности, биостойкость, влажность, декоративность и т.д.

Шероховатость поверхности изделий из древесины оказывает непосредственное влияние на многие технологические и эксплуатационные свойства деталей в целом и является важным производственным фактором, с которым связан расход материалов и технико-экономическая эффективность многих технологических операций таких, как склеивание, шлифование, покрытие лаком и др. Нельзя забывать и о эстетических свойствах древесины – отражающую и поглощающую способность, на которую непосредственно оказывает влияние шероховатость поверхности.

Актуальность проблемы получения необходимого качества обработанной поверхности древесины в настоящее время становится всё более значимой в связи с повышением требований к качеству продукции деревообработки и получения наибольшего экономического эффекта для предприятия.

Технологическая система деревообработки в соответствии с ГОСТ 27.004-85 [2] включает в себя функционально взаимосвязанные средства технологического оснащения - станок, предмет производства и исполнителя - станочника по деревообработке,