угла среза торца щепы до 30° углы β_{κ} и β_{π} приблизительно равны по величине.

Как видим, полученные аналитические зависимости устанавливают связь между толщиной $S_{\text{пь}}$ длиной $l_{\text{п}}$ щепы и угловыми параметрами элементов резца. Эти основные параметры влияют на силовые показатели процесса резания, качество получаемой щепы и бруса, дают возможность связать параметры резца с параметрами технологической щепы, бревна, бруса, а также являются исходными при проектировании спиральных фрез, фрезерно-брусующих станков — основой расчета режимов резания на данном типе оборудования, подготовки и последующего проведения экспериментальных исследований.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Механическая технология древесины / Под ред. Н. А. Ватина. Мн.: Вышэйшая школа, 1979. Вып. 9. 164 с.
- 2. Механическая технология древесины / Под ред. Н. А. Ватина. Мн.: Вышэйшая школа, 1985. Вып. 9. 144 с.
- 3. Микулинский В. И. О проекции углов на плоскость. В кн.: Вопросы резания, надежности и долговечности дереворежущих инструментов и машин. Л.: ЛТА, 1983.
- 4. Станки и инструменты деревообрабатывающих производств: Межвуз. сб. науч. тр. Л.: ЛТА, 1986. 136 с.

МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ЖИДКОСТИ В ЦЕНТРОБЕЖНЫХ НАСОСАХ

Соколов Е.В. (УГЛТУ, Екатеринбург, $P\Phi$) sokolov_ev.art@mail.ru **Анкудинов** Д.Т. (УГГГУ, Екатеринбург, $P\Phi$)

MODELING FLOWING FLUID IN THE CENTRIFUGAL PUMPS

За последние годы лесопромышленный комплекс (ЛК) России существенно изменился. Круг вопросов, который активно обсуждается специалистами отрасли касается: технологий, оборудования, экологии. Основой задачей предприятий деревообрабатывающей, целлюлозно-бумажной и других промышленностей ЛК России является увеличение выпуска высококачественной продукции. Это достигается применением новых эффективных технологий, что позволяет сертифицировать выпускаемую продукцию в соответствие с требованиями международных стандартов.

Истощение природных запасов и рост цен на энергоносители потребует создания более эффективных технологий, машин и оборудования. Поэтому проектные организации, осуществляющие разработку технологических линий, все больше уделяют внимания вопросу энергосбережения, безопасности и экологии. Эти требования предъявляют к агрегатам от непрерывной работы которых, зависит объем и качество выпускаемой продукции. К энергопотребляющему оборудованию относятся насосные системы, использующие электрическую энергию для создания потока жидкой среды. Насосы применяют там, где требуется подавать вещество в жидком состоянии: клеи, растворы,

водоволокнистую суспензию, а также техническую воду. В основном для этих целей используют динамические насосы, большую часть которых составляют центробежные.

В работе проводиться моделирование течения в центробежном насосе. Исследование гидродинамики позволяет, обосновано принимать конструктивные решения при модернизации насосного агрегата.

Система перекачки жидкой среды с насосом включающая в себя, напорный и всасывающий трубопроводы, гидоарматуру, контрольно-измерительные приборы называют гидравлической сетью. Проектировочный расчет сети включает в себя: подбор насоса; выбор диаметров и длин трубопроводов; запорной арматуры; контрольно-измерительных приборов. Наиболее сложным является выбор насоса для гидросистемы, так как требуется найти подачу, которая будет обеспечиваться системой при работе насоса в оптимальном режиме, то есть с максимальным КПД (рис.1).

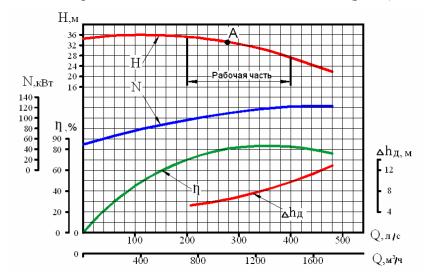


Рисунок 1 — Характеристика насоса ХРО1000/34-К-СД: Н-напорная; η ,N-энергетическая; $\Delta h_{\mathcal{I}}$ -кавитационная; А-точка оптимального режима роботы; Q=1000м³/ч; H=34м; $h_{\text{доп}}$ =6,5м; N=125кВт; КПД-80%; частота вращения 960 об/мин

В качестве объекта исследования был выбран центробежный насос типа XPO 1000/34, (рис.2) выпускаемый ОАО «УЭТМ - Уралгидромаш» (Свердловская обл. г. Сысерть). Насосы этого типа предназначены для подачи волокнистых полуфабрикатов, технической воды и других веществ с плотностью и концентрацией, не превышающей паспортных данных.

Усовершенствование центробежных насосов идет по следующим направлениям [1]:

- улучшение показателей эффективности: уменьшение кавитационного запаса Δh , повышение КПД η ;
- снижение материалоемкости, уменьшение габаритных размеров, с увеличением энергоемкости агрегата;
 - повышение надежности, безопасности и требований экологии;

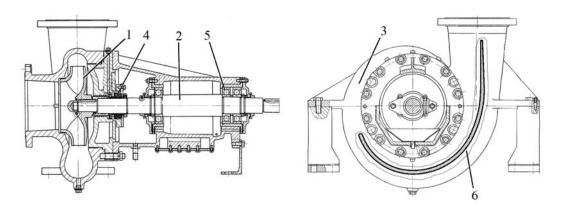


Рис. 2. Центробежный насос ХРО1000/34-К-СД: 1-рабочее колесо; 2-вал; 3-спиральный отвод; 4-уплотнение; 5-подшипники; 6-разделтель спирального отвода («выгородка»)

Отметим, что энергопотребление и экологическая безопасность являются показателями качества насосного агрегата сформулированные Европейской ассоциацией производителей насосов (Europump) в программе Есоритр [2,3]. Поэтому совершенствование конструкции насосного агрегата является актуальной задачей, решение которой невозможно без детального знания картины пространственных течений.

Центробежный химический насос XPO 1000/34 (рис.2) одноступенчатый, консольный. Рабочее колесо (РК) закрытого типа, одностороннего входа без разгрузочного устройства. РК имеет шесть лопастей загнутых назад, спиральный отвод с разделителем («выгородкой»). Частота вращения РК составляет 960 об/мин. Рабочей средой является жидкость. Лопастной системой насоса является совокупность проточных частей РК и спирального отвода.

Моделирование течение жидкости в лопастной системе основано на численном решении дифференциальных уравнений Навье-Стокса [4]. Для решения используется метод конечных элементов. Этот метод реализован в программах вычислительной гидродинамики (CFD) ANSYS CFX, FLUENT др. В первом приближении для получения картины течений была решена плоская задача.

Описание модели. Модель лопастной системы была построена в программе Unigraphics. Импортировалась в программу ANSYS, где дорабатывалась и строилась с помощью регулярной прямоугольной сетки (рис.3).

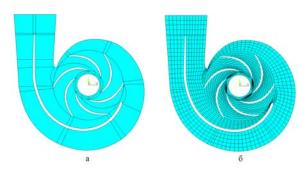


Рис. 3. Импортированная (а) и конечно-элементная (б) модели

Топология расчетной сетки. При построении расчётной сетки были выполнены следующие условия:

автоматическое разбиение средствами программы ANSYS; тип конечного элемента (КЭ) - PLANE 182; общее количество — 1885 конечных элементов; сгущение сетки вдоль границ лопаток и корпуса не проводилось.

 Φ изическая модель. Расчет течений проводился в CFD пакете FLUENT (рис.4). РК насоса совершает вращение с постоянной угловой скоростью 103 рад/с на входе в насос задавалось значение абсолютной скорости потока 3,87 м/с, что соответствует оптимальному режиму работы $Q_{\text{опт}}$ (т. A рис. 1).

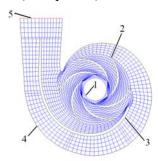


Рис. 4. Граничные условия в модели: 1-вход (inlet); 2-лопасти (blade); 3-разделитель (split); 4-корпус (case); 5-выход (outlet)

Температура жидкой среды на входе 16^{0} С (286К), свойства жидкой среды соответствуют воде с плотностью 998 кг/м³ [5]. Гидравлический диаметр на входе и выходе принимался D_r =0,608м. Рабочая среда полагалась несжимаемой, режим течения турбулентный. В расчете принималась стандартная k-epsilon (κ - ε) модель турбулентности. Для получения решения задавалось 100 итераций, сходимость получена на 78-ой итерации. Время расчета составило около 1,5мин. Результатом расчета является спектр полных давлений на оптимальном режиме работы насоса (рис. 5).

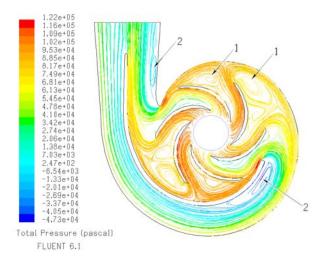


Рис. 5. Спектр полных давлений (Па) на оптимальном режиме работы: 1-вихревое движение, 2-обратные течения (токи)

Результаты численного моделирования имеют хорошую сходимость с экспериментальными данными. Более точные результаты могут быть получены при построении пространственной модели лопастной системы.

Выводы.

Результаты моделирования могут использоваться для оценки гидродинамических характеристик лопастной системы центробежного насоса.

Выявлены зоны обратных течений, это свидетельствует о несовершенстве геометрии проточной части спирального отвода. Нарушение равномерности поля скорости оказывает существенное влияние на величину гидродинамических потерь.

На основании полученной картины плоских течений можно усовершенствовать проточную часть лопастной системы с целью снижения потерь.

Центробежные насосы с улучшенными показателями эффективности, работающие в составе непрерывных производственных процессов предприятий деревообрабатывающей промышленности [6] позволят снизить энергопотребление, что уменьшит себестоимость выпускаемой продукции.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Виноградская. Т.И., Лесников. О.М. Оценка технического уровня и качества насосного оборудования. Совершенствование насосного оборудования. Труды ВНИИ-гидромаша. 1982. С. 143-150.
- Караханьян. В. РАПН сегодня // «Насосы&оборудование». 2005. №2-3. С.
 6-8.
- 3. Караханьян. В. Есоритр программа Еигоритр по снижению энергопотребления и защите окружающей среды // «Насосы&оборудование». 2005. №5. С. 5-6.
- 4. Андерсон Д., Таннехил Дж., Плетчер Р. Вычислительная гидродинамика и теплообмен. В 2-х т. Т. 1: Пер. с англ. М.: Мир, 1990. 384 с.
- 5. Справочник по расчетам гидравлических и вентиляционных систем. Под ред. Юрьева А.С. С.-Пб, АНО. НПО "Мир и семья" 2001. 1154 с.
- 6. Варфоломеев Ю.А., Агапов Д.В. Федотов В.И., и др., Новый отечественный завод для автоклавной пропитки древесины // «Деревообрабатывающая промышленность». 2001. №2. С. 7-9.

ОСОБЕННОСТИ ОЦИЛИНДРОВКИ БРЁВЕН ТОЧЕНИЕМ

Сергеевичев А.В. (СПбГЛТА, Санкт-Петербург, $P\Phi$)

FEATURES OF CYLINDRICAL TURNING OF LOGS

Точение - процесс обработки древесины резанием, при котором из заготовки получается тело вращения по заранее заданному профилю [1]. При точении срезается винтовая или спиральная непрерывная стружка.

В настоящее время, в основном, применяют следующие приемы точения:

1. Осевое точение, при котором вершина режущего лезвия резца находится на уровне зажимов, а резец во время точения перемещается вдоль оси вращения детали.

Принципиальная схема осевого точения древесины с указанием основных геометрических параметров и описанная в работе [2] представлена на рис. 1.