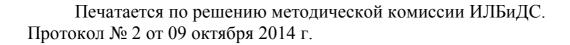


В.Н. Старжинский А.В. Зинин М.Н. Гамрекели

РАСЧЕТ КРАТНОСТИ ВОЗДУХООБМЕНА И ОБЩЕОБМЕННОЙ ВЕНТИЛЯЦИИ ЦЕХА


МИНОБРНАУКИ РОССИИ

ФГБОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра охраны труда

В.Н. Старжинский А.В. Зинин М.Н. Гамрекели

РАСЧЕТ КРАТНОСТИ ВОЗДУХООБМЕНА И ОБЩЕОБМЕННОЙ ВЕНТИЛЯЦИИ ЦЕХА

Учебно-методическое пособие к выполнению практической работы по курсу «Безопасность жизнедеятельности» для студентов всех специальностей и направлений обучения

Рецензент – Ольховка И.Э., канд. с.-х. наук доцент кафедры охраны труда УГЛТУ

Редактор А.Л. Ленская Оператор компьютерной верстки Т.В. Упорова

Подписано в печать 16.07.15		Поз. 34
Плоская печать	Формат 60×84 1/16	Тираж 10 экз.
Заказ №	Печ. л. 0,7	Цена руб. коп.

Редакционно-издательский отдел УГЛТУ Отдел оперативной полиграфии УГЛТУ

Практическая работа включает решение двух задач:

- 1) определение необходимой кратности воздухообмена в помещении цеха;
- 2) расчет общеобменной механической вентиляции в цехе при одновременном выделении в воздух рабочей зоны нескольких вредных веществ.

Задача № 1

РАСЧЕТ НЕОБХОДИМОЙ КРАТНОСТИ ВОЗДУХООБМЕНА В ПОМЕЩЕНИИ ЦЕХА

Требуется определить необходимую кратность воздухообмена в помещении объемом V_n , если в него просачивается газ через неплотности аппарата объемом V_d (табл. 1, 2). Подаваемый воздух не содержит примесей. Сделать выводы и дать необходимые рекомендации.

Таблица 1 Исходные данные для расчета

	Исходные данные									
Вариант	$V_{\Pi} M^3$	V_{dM}^{3}	t, °C	Наименование газа	Коэффициент запаса	Коэффи- циент С, зависящий	Молеку- лярная масса			
1	600	10	180	Сероуглерод	1,5	от давления 0,121	газа 76			
2	700	12	180	Сероуглерод	1,0	0,166	76			
3	800	14	150	Сероуглерод	1,3	0,121	76			
4	900	16	100	Сероводород	1,1	0,166	34			
5	1000	18	125	Сероуглерод	1,2	0,231	76			
6	1200	20	125	Аммиак	1,5	0,151	17			
7	1300	22	100	Аммиак	1,0	0,166	17			
8	1400	25	90	Аммиак	1,2	0,121	17			
9	1500	28	80	Фтористый водород	1,0	0,166	20			
10	1600	30	70	Фтористый водород		0,141	20			
11	1200	40	35	Этилацитат	1,5	0,121	88			
12	1000	15	40	Бутилацетат	1,4	0,231	116			
13	800	45	70	Ацетон	1,5	0,166	58			
14	1500	30	120	Ацетон	1,3	0,121	58			
15	600	15	160	Сероводород	1,1	0,231	34			
16	1100	20	70	Этилацетат	1,0	0,166	88			
17	500	10	45	Бензол	1,2	0,121	78			
18	1500	50	25	Аммиак	1,3	0,166	17			
19	1200	14	100	Метанол	1,1	0,121	32			
20	960	25	50	Ацетон	1,5	0,166	58			

Таблица 2 Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны

Розудатра	Класс	Предельно допустимая				
Вещества	опасности	концентрация, $C_{\Pi J K}$, мг/м ³				
Амилацетат	4	100				
Аммиак	4	20				
Ацетон	4	200				
Бензол	2	5				
Бутилацетат	4	200				
Ксилол	3	50				
Сероводород	2	10				
Сероуглерод	2	10				
Скипидар (в пересчете на С)	4	300				
Спирт метиловый (метанол)	3	5				
Спирт бутиловый	3	10				
Стирол (метилстирол)	3	5				
Толуол	3	50				
Фенол	3	0,3				
Формальдегид	2	0,5				
Фтористый водород	2	0,5				
Этилацетат	4	200				

УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧИ

1. Количество просачивающегося в помещение газа $(q, \kappa \Gamma/\Psi)$,

$$q = \eta c V_a \sqrt{\frac{M}{T}} , \qquad (1)$$

где η — коэффициент запаса;

с - коэффициент, зависящий от давления внутри аппарата;

 V_a – объем аппарата, м³;

M — молекулярная масса газа;

T — абсолютная температура газа в аппарате, К.

2. Объем воздуха, отсасываемого из помещения $(L, M^3/\Psi)$,

$$L = \frac{q \cdot 10^6}{C_{max}},\tag{2}$$

3. Кратность воздухообмена (К, раз/ч),

$$K = \frac{L}{V_n} \,. \tag{3}$$

4. Сравнить полученный результат с рекомендуемым значением и, если расчетная кратность воздухообмена общеобменной вентиляции больше нормативной (3-10 раз/ч), предложить аппаратурные и технологические меры по снижению концентрации вредных веществ в воздухе рабочей зоны.

Задача № 2

РАСЧЕТ ОБЩЕОБМЕННОЙ МЕХАНИЧЕСКОЙ ВЕНТИЛЯЦИИ В ЦЕХЕ ПРИ ОДНОВРЕМЕННОМ ВЫДЕЛЕНИИ В ВОЗДУХ РАБОЧЕЙ ЗОНЫ НЕСКОЛЬКИХ ВРЕДНЫХ ВЕЩЕСТВ

Требуется провести расчет общеобменной механической вентиляции в цехе при одновременном выделении в воздух рабочей зоны нескольких вредных веществ в количествах, указанных в табл. 3. Содержание вредных веществ в атмосферном воздухе принять равным 30 % от предельно допустимой концентрации в атмосферном воздухе населенных пунктов. Сделать выводы и дать необходимые рекомендации, учитывая, что максимально допустимый воздухообмен при механической вентиляции составляет 10 раз в час.

Таблица 3 Исходные данные

			Количество выделяющихся веществ, г/ч									
Вариант	Строительный объем, м ³	Амилацетат	Ацетон	Бензол	Бутилацетат	Бутиловый спирт	Ксилол	Скипидар	Фенол	Формальдегид	Толуол	Стирол
1	2	3	4	5	6	7	8	9	10	11	12	13
1	4000	50	150	50	-	-	-	-	20	-	-	10
2	4500	60	100	50	-	-	50	-	30	10	-	-
3	5000	70	50	100	-	100	-	ı	ı	-	50	-
4	5500	80	50	100	-	100	100	50	-	-	-	-
5	6000	90	150	50	50	-	-	-	10	10	-	-
6	6500	100	50	50	50	-	50	1	1	-	-	30
7	7000	50	50	50	100	100	-	50	20	•	-	-
8	7500	50	100	50	100	50	50	1	1	•	-	-
9	8000	50	50	100	150	-	-	-	10	10	-	-
10	8500	50	150	-	-	-	50	50	20	10	-	-
11	9000	100	100	20	30	-	50	50	40	20	-	10
12	9500	100	50	20	50	50	-	•	•	20	-	20
13	10000	100	20	50	50	100	-	ı	10	20	-	-
14	10500	100	10	50	30	10	-	-	10	10	100	-

Окончание табл. 3

1	2	3	4	5	6	7	8	9	10	11	12	13
15	11000	50	50	ı	1	-	-	ı	20	20	1	10
16	11500	100	100	ı	ı	100	-	50	1	-	-	1
17	12000	100	50	50	10	-	-	-	20	10	-	-
18	12500	150	75	75	ı	-	-	300	1	-	-	20
19	13000	150	100	50	ı	-	-	200	20	20	-	1
20	13500	100	150	50	ı	100	100	1	1	-	100	ı
21	14000	100	100	50	10	150	150	1	1	-	100	-
22	14500	150	50	75	10	75	100	•	•	-	-	-
23	15000	200	50	50	20	75	-	-	-	-	-	20

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Найдите значение предельно допустимых концентраций паров, указанных веществ 1, 2, ..., і.
- 2. Принимая содержание вредных веществ 1, 2, ..., і в наружном атмосферном воздухе соответственно $C_1 = 0,3$ ПД K_1 ; $C_2 = 0,3$ ПД K_2 ; $C_i = 0,3$ ПД K_1 , где ПД K_1 , ПД K_2 , ПД K_i предельно допустимые концентрации веществ 1, 2...і в атмосферном воздухе населенных пунктов (табл. 4), определите количество заменяемого воздуха (L_i м 3 /ч) для паров указанных веществ 1, 2, ..., і в отдельности,

$$L_i = \frac{q_i 10^3}{C_{\Pi Д K_i} C_i},$$

где q_i — количество выделяющегося і-го вещества, г/ч;

 C_i — концентрация паров і-го вещества в наружном воздухе (табл. 1), мг/ м³.

3. Определите максимальное количество воздуха (L, $м^3/ч$), которое необходимо заменить в рабочем помещении общеобменной вентиляцией при одновременном выделении всех вредных веществ:

$$L=\sum L_i$$
.

- 4. По формуле (3) рассчитайте кратность воздухообмена для цеха.
- 5. Сравните полученный результат с рекомендуемым значением и, если расчетная кратность воздухообмена общеобменной вентиляции больше нормативной (3-10 раз/ч), предложите аппаратурные и технологические меры по снижению концентрации вредных веществ в воздухе рабочей зоны.

Таблица 4
Предельно допустимые концентрации вредных веществ в атмосферном воздухе населенных пунктов

Вещества	Предельно допустимые концентрации, мг/м ³					
Бещества	Максимальная	Среднесуточная				
Амилацетат	0,1	0,1				
Аммиак	0,2	0,2				
Ацетон	0,35	0,35				
Бензол	1,5	0,3				
Бутилацетат	0,1	0,1				
Бутиловый спирт	0,1	_				
Ксилол	0,2	0,2				
Стирол	0,003	0,003				
Толуол	0,6	0,6				
Фенол	0,01	0,01				
Формальдегид	0,035	0,012				

3. ФОРМА ОТЧЕТНОСТИ

Студент представляет отчет по работе, в котором по каждой задаче раздельно дается расчет в соответствии с порядком выполнения задачи и делаются выводы по результату расчетов.

Работа выполняется в бумажном варианте на листах формата А 4.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятия (общесоюзный нормативный документ ОНД–86). Госкомгидромет. Л.— Гидрометеоиздат.— 1987.-93 с.
- 2. ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны. Межгосударственный стандарт системы стандартов безопасности труда. ИПК Изд-во стандартов. Утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 29.09.88 № 3388. Дата введения 1989-01-01. 44 с. URL: http://www.stroyplan.ru/.
- 3. ГН 2.2.5.1313-03. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны. Утверждены Постановлением N 96 Главного государственного санитарного врача РФ от 12 июля 2011 г. URL: http://www.stroyplan.ru/.
- 4. ГН 2.2.6-709-98. Предельно допустимые концентрации (ПДК) микроорганизмов-продуктов, бактериальных препаратов и их компонентов в воздухе рабочей зоны. Утверждены Постановлением Главного государственного санитарного врача РФ от 23 июля 1998 г. N 24. Дата введения с 1 февраля 1999 года. URL: http://ohranatruda.ru/.
- 5. Строительные нормы и правила РФ. СНиП 41-01-2003. «Отопление, вентиляция и кондиционирование» (приняты постановлением Госстроя РФ от 26 июня 2003 г. N 115). Введены 1 января 2004 г. URL: http://base.garant.ru/.
- 6. Свод правил. СП 0.13330.2012. Отопление, вентиляция и кондиционирование. Актуализированная редакция СНиП 41-01-2003. Свод правил: отопление, вентиляция и кондиционирование воздуха. Heating, ventilation and conditioning. URL: http://docs.cntd.ru/.
- 7. Пособие к СНиП 2.08.01-89. Отопление и вентиляция жилых зданий. ЦНИИЭП инженерного оборудования Госкомархитектуры. Введены 01.01.1990. М.: Стройиздат. 1990. URL: http://snipov.net.
- 8. Полушкин В., Анисимов С., Васильев В., Дерюгин В. Вентиляция. М.: Academia, 2011 г. 416 стр. URL: http://books.academic.ru/.
- 9. Торговников Б.М., Табачник В.Е., Ефанов Е.М., Проектирование промышленной вентиляции. Киев: Будівельник. 1983. 256 с. URL: http://www.ozon.ru/.