

В.Н. Старжинский А.В. Зинин М.Н. Гамрекели

РАЗРАБОТКА ТЕХНИЧЕСКИХ РЕШЕНИЙ ПО СНИЖЕНИЮ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ

МИНОБРНАУКИ РОССИИ

ФГБОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра охраны труда

В.Н. Старжинский А.В. Зинин М.Н. Гамрекели

РАЗРАБОТКА ТЕХНИЧЕСКИХ РЕШЕНИЙ ПО СНИЖЕНИЮ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ

Учебно-методическое пособие к выполнению практической работы по курсу «Безопасность жизнедеятельности» для студентов всех специальностей и направлений обучения

Рецензент – Ольховка И.Э., канд. с.-х. наук доцент кафедры охраны труда УГЛТУ

Редактор А.Л. Ленская Оператор компьютерной верстки Т.В. Упорова

Подписано в печать 16.07.15		Поз. 37		
Плоская печать	Формат 60×84 1/16	Тираж 10 экз.		
Заказ №	Печ. л. 0,46	Цена руб. коп.		

Редакционно-издательский отдел УГЛТУ Отдел оперативной полиграфии УГЛТУ

Практическая работа включает разработку мер по снижению вредного воздействия производственных выбросов на экологию.

1. ВЫБОР ВАРИАНТА

	Исходные данные							
Ba-		ПДК газа в						
ри- ант	Вырабатываемый газ	атмосферном воздухе, мг/м ³	q, r/c	Н, м	V ₀ ,м/c			
		(среднесуточное)						
1	Окись углерода	1	200	40	4			
2	Окись углерода	1	300	50	6			
3	Окись азота	0,3	400	45	8			
4	Окись азота	0,3	500	55	10			
5	Сернистый ангидрид	0,05	200	60	12			
6	Сернистый ангидрид	0,05	300	55	5			
7	Сероводород	0,08	400	50	10			
8	Сероводород	0,08	500	45	10			
9	Хлор	0,01	250	40	15			
10	Хлор	0,01	350	50	20			
11	Двуокись азота	0,085	400	50	10			
12	Двуокись азота	0,085	500	45	15			
13	Ацетон	0,35	180	45	7			
14	Ацетон	0,35	150	35	5			
15	Фтористые соединения	0,1	100	35	5			
16	Фтористые соединения	0,1	150	25	7			
17	Формальдегид	0,035	200	35	7			
18	Формальдегид	0,035	150	45	5			
19	Бензол	0,003	250	45	7			
20	Бензол	0,003	300	50	5			

2. РАСЧЕТЫ

Эффективность рассеяния вредных газов в воздухе с помощью трубы

1.1. Рассчитать максимальную концентрацию газа в приземном слое атмосферы ($C_{\rm max}$, мг/м³) при заданной высоте трубы и сравнить ее с ПДК:

$$C_{\text{max}} = \frac{94q}{v_0 H^2},$$

где q – выброс загрязнителя в атмосферу, г/с;

 v_{θ} — скорость ветра на высоте трубы, м/с;

H — высота трубы, м.

1.2. Рассчитать необходимую высоту трубы для разбавления выбросов атмосферным воздухом и рассеяния вредных веществ по большой площади земной поверхности, чтобы при тех же условиях выброса обойтись без очистных установок (H, \mathbf{M}) :

$$H = \sqrt{\frac{94q}{v_0 C_{\Pi J K}}} \ .$$

Эффективность средств газоочистки

Рассчитать необходимую степень очистки воздуха перед выбросом за пределы цеха (η), при которой в приземном слое атмосферы будет соблюдаться предельно допустимая концентрация газа ($C_{\Pi J\! K}$) в атмосферном воздухе населенных пунктов (см. таблицу):

$$\eta = 100 \frac{C_{\text{max}} - C_{\Pi / I / K}}{C_{\text{max}}},$$

Выбор технологических и аппаратурных решений по газоочистке воздуха перед выбросом

- 1. Определить реагенты, при химических реакциях с которыми вредные газы в воздухе образуют безвредные вещества или вещества в другом агрегатном состоянии. Например, в результате реакций образуются вещества в виде жидкости или в виде твердой фазы (первая ступень очистки). Это позволяет отделить полученные вещества от воздуха (вторая ступень очистки), используя физические методы очистки, например фильтрацию, сепарацию в центробежном поле (циклоны, центрифуги), в электрическом или в электромагнитном полях (электрофильтры, магнитные сепараторы).
 - 2. Записать химические реакции.
- 3. Предложить аппараты для отделения образующихся в результате химических реакций веществ от воздуха.

3. ФОРМА ОТЧЕТНОСТИ

- 1. По каждому разделу задачи представляются его содержание, расчет и обсуждение результата.
- 2. По разделу 2 приводятся записи содержания задания каждого пункта и аргументированные ответы, приводятся химические реакции и сведения о рекомендуемых аппаратах газоочистки.
 - 3. Отчет представляется в бумажном варианте на листах формата А4.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятия (Общесоюзный нормативный документ ОНД–86). Л.: Гидрометеоиздат. 1987. 93 с.
- 2. ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны. Межгосударственный стандарт системы стандартов безопасности труда. Утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 29.09.88 № 3388. Дата введения 1989-01-01. М. 44 с.
- 3. ГН 2.2.5.1313-03. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны. Утверждены Постановлением N 96 Главного государственного санитарного врача РФ от 12 июля 2011 г.
- 4. ГН 2.2.6-709-98. Предельно допустимые концентрации (ПДК) микроорганизмов-продуктов, бактериальных препаратов и их компонентов в воздухе рабочей зоны. Утверждены Постановлением Главного государственного санитарного врача Р Ф от 23 июля 1998 г. N 24. Дата введения с 1 февраля 1999 года.