В. И. Шабуров

НЕКОТОРЫЕ ОСОБЕННОСТИ РОСТА ЕЛИ СИБИРСКОЙ В УПЛОТНЕННЫХ ШКОЛАХ НА ДЕРНОВО-СЛАБОПОДЗОЛИСТЫХ ПОЧВАХ В УСЛОВИЯХ ПОДЗОНЫ ЮЖНОЙ ТАЙГИ СРЕДНЕГО УРАЛА

При создании лесных культур укрупненный посадочный материал ели обладает существенными преимуществами по сравнению с обычными сеянцами. Использование его позволяет значительно сократить объемы работ по уходу за саженцами непосредственно на лесокультурной плошади с целью защиты их от сорной растительности. Этому вопросу в последние годы стало уделяться большое внимание (Мысик, 1963; Алексеев, 1965; Ульянов, 1968 и др.).

Укрупненные саженцы ели целесообразно выращивать в уплотненных школах с плотностью посадок до 300 и более тыс. шт. на 1 га. Имеющийся опыт и научная информация по выращиванию такого посадочного материала относится к Европейской части СССР (Доценко, 1969; Мелешин, 1967; Баранник, 1970 и др.) и затрагивают, в основном, ель обыкновенную. При этом установлено, что наилучшие результаты по приживаемости и активности роста получаются при использовании для лесных культур 4-летних саженцев ели. Аналогичные результаты получены П. И. Мелешиным (1969) и для ели сибирской в условиях среднетаежной подзоны Урала. Тем не менее, П. И. Мелешин считает целесообразным отдать предпочтение 5-летним саженцам ели сибирской, культуры, заложенные такими саженцами, В последующие годы превосходят по высоте культуры, созданные 4-летними саженцами. Уплотненная посадка ели, с размещением на 1 га до 300 тыс. саженцев, может быть обеспечена посадочной машиной СШП-5, разработанной ВНИИЛМом

Нашими исследованиями за период 1968—1970 гг., в ко-

торых в разное время участвовали В. А. Макаров и П. И. Мелешин, затронуты лишь некоторые вопросы, связанные с совершенствованием агротехники выращивания посадочного материала ели сибирской на лесных питомниках. В частности, изучены особенности роста надземных частей, регенерации и формирования корневых систем сеянцев и саженцев до 6-летнего возраста применительно к местным условиям в различных вариантах размещения и плотности посадок (от 53 до 732 тыс. шт. на 1 га). Исследования проводились в трех пунктах (Верх-Исетский, Полевской и Староуткинский лесхозы Свердловской области), удаленных друг от друга на 60—80 км и различающихся, главным образом, почвенными условиями (табл. 1).

Таблица 1 Сравнительные данные химического анализа образцов почв пахотных горизонтов опытных участков

		Опытны	е участки	
	№ 1	№ 2	№ 3	№ 4
Показатели	Верх- Исетский лесхоз	Староут лесэ	кинский коз	Полев- ской лесхоз
	питом- ник	питом- ник	кв. 90	питом- ник
Сумма поглощенных оснований мг-экв. на 100 г. почвы Гидролитическая кислотность	18,6	12,2	32,6	9,6
мг-экв. на 100 г почвы Степень насыщенности основа-	5,1	7,0	10,6	6,6
ниями, % Содержание гумуса, % Подвижные элементы, мг на 100 г почвы:	79,0 2,43	64,0 4,77	75,4 7,6	60,0 4,93
P ₂ O ₅ K ₂ O	1,25 2,5	2,5 2,5	1,3 0,0	1,25 2,5
Кислотность почвенного раство- ра (рН)	4,6	4,4	_	4,2

Почвы на всех опытных участках дерново-слабоподзолистые легко- и среднесуглинистые. Из таблицы видно, что пахотные горизонты на опытных участках № 1 и 3 отличаются более высокими суммой поглощенных оснований и степенью насыщенности основаниями.

Рост и формирование надземных частей и корневых систем у сеянцев и саженцев ели сибирской, по нашим данным, в общих чертах заключается в следующем.

У сеянцев в первые два года жизни рост корневой системы идет, в основном, в вертикальном направлении. Длина корней у 2-летних сеянцев, обычно, превышает высоту надземной части в 3 раза. Сеянцы в это время характеризуются наличием одного—двух главных корней.

В 3-летнем возрасте, в первый год произрастания в школе, у саженцев в течение вегетационного периода происходит постепенное восстановление корневой системы с преимущественным ростом в глубину. Горизонтальное распространение корней в этот год у саженцев в среднем составляет 6—7 см, не превышая 14—15 см. Проникновение корней в глубину к концу вегетации восстанавливается до 3-кратной величины надземной части. Надземная часть, кроме незначительного увеличения высоты и диаметра, существенных изменений не претерпевает (количество боковых побегов, по сравнению с 2-летними сеянцами, не увеличивается).

На второй год произрастания в школе у 4- и 5-летних саженцев идет усиленный рост корней 1 и 2-го порядков. Горизонтальное распространение корней достигает 2—4-кратной величины надземной части. Этот период характеризуется появлением многочисленных корешков 3-го порядка. Рост надземной части сопровождается значительным увеличением числа боковых побегов.

У 6-летних саженцев на третий год произрастания в школе наблюдается резко выраженное увеличение биомассы за счет усиленного роста по высоте и диаметру. Количество побегов 1-го порядка возрастает, по сравнению с 5-летними саженцами, в несколько раз. Горизонтальное распространение корней у саженцев средних размеров достигает 56 см.

Биометрическая характеристика саженцев ели сибирской разного возраста в школе при наиболее уплотненном размещении приводится в таблице 2.

Уплотнение посадочного материала ели сибирской в школе до размещения саженцев 10×10 см не оказало отрицательного воздействия на рост и качественное состояние саженцев. Это в равной мере касается таких важных признаков, как размеры саженцев и темпы их роста по высоте, размеры и архитектоника корневой системы. Коэффициенты достоверности различий по высоте и приросту текущего года надземной части и диаметру саженцев у шейки корня оказа-

Таблицэ 2

Биометрическая характеристика саженцев ели сибирской разного возраста на опытных участках при размещении их в школе 10x10 см

				11			7	V common to the common V
				падземная часть	Hacrb		порнев	ия система
ОПЫТНОГО ВСТКА		озраст сатистиче- енцев ские	BLICOTA, CM	диаметр у шейки корня, мм	вес воздуші щества у ср цс	вес воздушно-сухого ве- щества у средних образ- цов, г	длина кор- невого пучка у средних	вес воздушно- сухого вещест- ва у средних
ŧΛ	B			•	Beero	в т. ч. хвои	ооразцов,	oopasuos, t
. 4	က	М±ш	6,38±0,38	2,26±0,08	0,36	0,15	12,7	0,24
		Крайние значения	1,5—12,5	1,3—3,5	0,17—0,66	0,08—0,28	9—19	0,17—0,33
—	4	W∓W	13,60±0,55	$3,05\pm0,13$	1,14	62'0	23,0	0,83
		Крайние значения	9,0—20,5	2,1—4,5	1,04-1,24	0,500,73	19—28	0,70—0,90
ć	4	M±m	$9,43 \pm 0,28$	1,91±0,11	0,42	0,26	14,5	0,20
		Крайние значения	6,5—17,0	1,0—3,1	0,36—0,52	0,18-0,38	10,5—18,0	0,120,27
c4	ro	M+m	$13,63\pm0,77$	2,84±0,17	1,04	0,55	22,0	0,62
_		Крайние значения	7,0—19,0	1,3—4,7	0,97—1,12	0,38-0,64	1228	0,53—0,69
က	9	W∓m	33,78±1,64	$6,02 \pm 0,25$	9,26	5,09	20,0	3,36
		Крайние значения	17,0—55,5.	4,2—9,1	7,33—10,56 3,80—5,92	3,805,92	1822	3,25—4,05

лись значительно ниже соответствующего критерия Стьюдента при 1%-ном уровне значимости. Отклонения признаков в уплотненных вариантах, по сравнению с контролем, носили положительный и отрицательный характер.

На опытных участках № 1 и 3 на 2-й год произрастания в школе, по мере увеличения густоты посадок, наблюдается положительный эффект роста саженцев. В наиболее уплотненных вариантах различия в приросте в высоту у саженцев, по сравнению с контролем (40×40 см), достигают достоверных величин (показатель достоверности различий 2,7—4,1), что свидетельствует о закономерном стимулирующем влиянии загущения на рост саженцев в отмеченных выше почвенных условиях.

В процессе роста в условиях различного загущения соотношения надземной части и корневой системы у саженцев одно-

го и того же возраста не нарушаются.

У саженцев ели сибирской, так же как и у сеянцев, в течение вегетации имеет место два периода усиленного роста надземной части — весенний и позднелетний. Позднелетний максимум роста, по наблюдениям В. А. Макарова, в определенной мере связая с подключением и усилением фотосинтетической деятельности хвои текущего года.

Рост корней у саженцев идет до глубокой осени, в то время как надземная часть прекращает рост в конце августа. Накопление биомассы надземной части с возрастом идет более усиленными темпами, чем накопление биомассы корней.