УДК 630*532

В. А. Усольцев, А. И. Антропов (Уральский государственный лесотехнический университет)

ОД РОСТА ФИТОМАССЫ ПИХТАРНИКОВ АЛТАЕ-САЯНСКОЙ ГОРНОЙ ПРОВИНЦИИ

По материалам Е. А. Ефимовича, К. Е. Никитина (1934) и В. С. Золотухина (1963), включающим в себя соответственно 43 и 33 пробных площади по оценке массы крон пихтарников горного Алтая, и данным И. Е. Кузикова (1979) и др. по оценке надземной и подземной фитомассы пихтарников Саян на 20 пробных площадях впервые составлены таблицы биологической продуктивности пихты сибирской для Алтае-Саянской горной провинции.

В связи со всевозрастающей актуальностью проблемы глобального потепления для расчета углерододепонирующей функции лесов необходимы таблицы хода роста фитомассы или таблицы биологической продуктивности насаждений. Подобные таблицы на сегодня составлены лишь в отдельных регионах для некоторых пород, тогда как ими должны быть охвачены все регионы страны и все лесообразующие породы по аналогии с традиционными таблицами хода роста (ТХР) древостоев. Для составления упомянутых нормативов ввиду их чрезвычайно высокой трудоемкости должны быть задействованы все накопленные на сегодня фактические данные о фитомассе лесов, для чего необходимы авторские публикации их в исходном виде, без какой-либо обработки (Усольцев, 1998а). К сожалению, если не большая, то весьма существенная часть фактических данных или публикуется в модифицированном виде, или хранится в личных архивах, со временем уходит безвозвратно вместе с их обладателями и теряется для науки. Тем не менее некоторая часть таких материалов, в свое время не доведенных исследователями до требуемого нормативного уровня, может быть сегодня соответствующим образом обработана и приведена в известность. Изложению опыта подобной работы посвящена настоящая статья.

В 1931-1932 гг. Е. А. Ефимовичем и К. Е. Никитиным (1934) в Зыряновском и Катон-Карагайском леспромхозах горного Алтая был собран

обширный экспериментальный материал по выходу хвойной лапки или древесной зелени (ДЗ), представляющей собой охвоенные ветви длиной 15-20 см. В чистых пихтарниках черневой тайги в пределах всего высотно-поясного диапазона было заложено 43 пробных площади, на которых взято по ступеням толщины 537 модельных деревьев. Древостои представлены в возрастном диапазоне 60-200 лет с полнотой 0,3-0,8, классы бонитета с I по V. Их более подробная характеристика была дана ранее (Усольцев и др., 1994).

Е. А. Ефимович и К. Е. Никитин (1934) привели для каждой пробной площади ведомости перечета деревьев с указанием возраста, густоты, полноты и класса бонитета, по которым они рассчитали запасы ДЗ, т, свежесрубленной массы на 1 га. Используя эти данные, мы рассчитали для каждой пробной площади недостающие показатели среднего диаметра, высоты и суммы площадей сечений (табл. 1). Соотнеся последний показатель с его стандартным значением по таблице ЦНИИЛХ, получили запасы стволовой древесины, которые по известной для пихты условной (базисной) плотности можно перевести на сухую массу. Таким образом, из надземной фитомассы в упомянутых данных остается неизвестной часть скелета кроны, неучтенная при взвешивании ДЗ.

Тридцатью годами позже в тех же лесхозах горного Алтая было исследовано накопление массы крон, древесины и коры стволов в аналогичных пихтарниках, где было заложено 33 пробных площади и взято по ступеням толщины 157 модельных деревьев (Золотухин, 1962, 1963). Древостои представлены в возрастном диапазоне 44 – 150 лет с полнотой 0,5 - 0,8, классы бонитета – со II по IV. Полученные значения массы кроны и ДЗ на 1 га в свежесрубленном состоянии были приведены В. С. Золотухиным к полноте 1,0 и описаны уравнениями парной связи с возрастом древостоев для II, III и IV классов бонитета раздельно с показателями точности выравнивания соответственно 0,99; 0,95 и 0,92.

Следует заметить, что процедуру коррекции массы крон древостоев на полноту по аналогии с редуцированием запаса стволовой древесины, принятым в лесной таксации, нельзя признать правомерной, хотя ее используют и другие авторы (Смирнова, 1951; Palumets, 1991). По мере снижения полноты древостоев данного возраста происходит перераспределение прироста от ствола в крону. Если для стволов такое смещение в относительном выражении невелико и зависимость массы стволов от полноты линейная (что и позволяет вводить коррекцию их запаса пропорционально относительной полноте), то для кроны при ее значительно меньшей по сравнению со стволом массой – довольно существенно. Вследствие этого масса крон на 1 га приводится к полноте 1,0 при низких полнотах,

Таблица 1 (Ефимович, Никитин, 1934; Золотухин,1962, 1963). Горный Алтай: Зыряновск, Катон-Карагай. 49°00′-49°50 с.ш., 84°25′-86°00′ в.д. Фактические данные фитомассы пихтарников Алтае-Саянской горной провинции

Ne Knacc A. N. Tusc. D. H. M. Φηττοмиясства в абсолютить трета Actions Param Xboss 1 тета 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 11 90 0,165 32,1 24,0 151 52,4 6,2 10,8 5,61 3 11 104 0,325 28,4 25,6 246 85,5 10,4 9,2 5,03 4 11 60 0,338 23,9 18,0 133 44,5 5,4 9,2 5,03 5 11 86 0,338 23,9 18,0 133 44,5 5,4 9,2 5,03 6 11 86 0,338 23,9 18,0 133 44,5 5,4 9,2 5,03 6 11 86 </th <th></th>																						
Класс тета A, N, тыс. ом мула D, H, М, мула H, М, мула Ств оста 1 1 3 4 5 6 7 8 6 2 3 4 5 6 7 8 6 7 8 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 7 8 7 7 8 7 9 6 7 8 8 7 1 8 6 7 8 8 7 1 8 6 7 8 8 7 1 8 6 7 8 8 7 1 1 8 6 7 8 5 4 4 5 6 7 8 5 4 4 5 6 7 8 5 4 4 5 6 7		Yang	ABOX	11	5,61	5,03	8,27	5,88	7,35	7,07	6,32	6,32	5,85	7,51	3,8	3,92	5,59	5,38	5,25	6,43	4,13	5,41
Класс тета A, N, тыс. ом мула D, H, М, мула H, М, мула Ств оста 1 1 3 4 5 6 7 8 6 2 3 4 5 6 7 8 6 7 8 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 7 8 7 7 8 7 9 6 7 8 8 7 1 8 6 7 8 8 7 1 8 6 7 8 8 7 1 8 6 7 8 8 7 1 1 8 6 7 8 5 4 4 5 6 7 8 5 4 4 5 6 7 8 5 4 4 5 6 7	забсолютно оянии, т/га	Bernu	DCIBA	10	10,8	9,5	9'91	10,0	13,9	13,4	12,8	12,9	10,8	13,9	7,5	8,5	11,5	10,7	10,4	13,1	8,0	10,5
Класс тета A, N, тыс. ом тета D, H, M, му/га H, M, му/га M, му/га гета тета 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Фитомасса в сухом состо	ыпы	кора	6	6,5	5,4	10,4	5,8	0,6	8,6	6,6	12,2	10,3	12,1	4,0	5,2	8,9	6,4	8,9	& &	5,8	8,2
Класс А, итыс. А, тыс. D, н, тыс. Н, мили мили мили мили мили мили мили мил		CTB	всего	8	52,4	44,5	85,5	46,2	74,0	80,3	82,8	106	85,4	101,1	33,4	43,8	55,9	51,8	56,3	72,3	47,9	2'99
Класс оони- лет тета А, путыс. D, обони- лет жа/га D, обони- обони- лет жа/га О, 165 32,1 П О, 188 29,4 П О, 338 23,9 П О, 338 23,9 П О, 338 23,9 П О, 338 23,9 П О, 338 27,3 П П О, 338 27,3 П П О, 338 27,3 П О, 338 27,3 П П О, 340 28,2 П П О, 36,4 П П О, 36,4 П П П П П П О, 36,4 П<	Ä,	M, M³/ra		7	151	128	246	133	213	231	247	305	246	291	96	126	191	149	162	208	138	192
Класс бони- лет тета А, п.тыс. экэ/га гета 3 2 3 4 II 90 0,165 II 75 0,188 II 60 0,335 II 86 0,333 II 85 0,340 II 86 0,188 II 80 0,188 II 98 0,131 III 98 0,131 III 98 0,131 III 110 0,245 III 100 0,245 III 91 0,221 III 91 0,328 III 91 0,328 IIII 91 0,221 IIII 93 0,328	Н,	×		9	24,0	21,0	25,6	18,0	23,2	23,0	26,5	26,4	21,8	22,0	21,3	24,0	22,8	21,5	21,5	22,6	50,6	20,8
Класс А, бони- тета 3 3 2 3 3 11 90 11 75 11 60 11 86 11 86 11 86 11 100 11 79 11 80 11 110 11 98 111 98 111 98 111 98 111 98 111 98	D,	3		5	32,1	29,4	28,4	23,9	27,3	28,2	37,1	37,9	29,1	31,2	30,4	32,7	27,8	26,3	28,8	28,3	28,4	27,4
Kyacc 600Hi.	N, TMC.	экз/га		4	0,165	0,188	0,325	0,338	0,333	0,340	0,188	0,220	0,356	0,366	0,131	0,133	0,245	0,267	0,242	0,309	0,221	0,328
	Ą	ЛЕТ		3	06	75	104	9	98	85	108	110	79	80	86	136	113	100	001	110	91	93
% 1 2 6 4 5 9 6 6 7 8 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Класс	-ино9	тета	2	II	=	п	Π	Ξ	Π	П	П	Ξ	Π	III	III	III	III	III	III	III	H
	ž	п. п.		1	1	7	3	4	2	9	7	∞	6	10	=	12	13	14	15	16	17	18

Окончание табл. 1.

=	6,18	5,05	5,31	7,03	5,74	6,37	5,97	5,97	7,28	8,00	8,13	3,88	3,91	2,58	5,69	2,19	2,41	3,50	3,67	3,23	3,90	4,35	3,62	3,37	5,43
10	12,9	11,5	10,4	14,3	12,4	11,6	11,9	11,6	14,0	15,8	14,5	7,7	7,4	5,4	0,9	5,3	5,4	7,1	7,4	6,9	8,0	8,2	7,8	7,0	11,4
6	6,6	11,1	9,5	10,7	12,2	9,4	11,0	10,3	12,1	13,9	12,0	4,6	4,2	4,0	2,0	4,5	5,5	5,3	6,1	6,5	8,3	7,3	8,7	8,0	13,7
∞	81,3	9,68	78,5	87,5	9,76	75,4	88,9	84,8	98,3	112,5	94,1	36,8	33,1	32,5	39,3	37,9	46,2	43,4	49,7	53,2	8,99	57,0	68,4	65,0	111,5
7	234	258	526	252	281	217	265	244	283	324	271	106	95,2	93,4	113	109	133	125	143	153	192	164	197	187	321
9	23,3	24,6	21,0	22,5	23,8	17,6	21,8	20,8	20,5	21,4	17,0	17,5	15,7	19,4	20,5	21,0	20,5	18,3	18,1	19,4	18,5	15,7	19,5	19,1	19,4
5	28,8	25,0	28,4	27,1	24,5	24,4	31,2	28,3	26,3	25,8	22,0	24,7	22,7	27,8	21,8	31,3	30,4	26,5	26,4	28,3	25,9	21,8	21,7	27,1	26,9
4	0,326	0,455	0,357	0,410	0,535	0,538	0,335	0,389	0,530	0,608	0,856	0,259	0,302	0,165	0,310	0,141	0,186	0,254	0,297	0,260	0,407	0,562	0,565	0,351	0,602
3	118	160	95	110	133	75	103	93	8	86	92	101	85	124	150	700	154	108	106	127	110	85	130	117	120
2	III	III	Ш	III	<u>></u>	Λ	Λ	<u>></u>	Λ	Λ	ΛI .	Ν	<u>></u>	<u> </u>	<u>≥</u>	<u>></u>	<u>></u>								
1	61	70	21	77	23	24	25	56	27	78	59	30	31	32	33	34	35	36	37	38	39	9	4	42	43

как и ствол, со знаком плюс, а при высоких - со знаком минус, т.е. зависимость массы крон от полноты нелинейная и упомянутая пропорциональность не соблюдается (Усольцев, 1985, 1988,6).

Однако для нашей цели упомянутый факт приведения массы полога пихтарников к полноте 1,0 не является компрометирующим эти данные, поскольку нам для дополнения материалов Е. А. Ефимовича и К. Е. Никитина (1934) необходим относительный показатель – доля ДЗ в кроне, а при использованном В. С. Золотухиным (1962, 1963) методе коррекции пропорции между ДЗ и скелетом кроны в их возрастной динамике не искажаются. Поэтому при составлении нашей таблицы возрастной динамики фитомассы за основу приняты абсолютные значения массы ДЗ и запаса стволовой древесины, полученные Е. А. Ефимовичем и К. Е. Никитиным (1934), а значения массы скелета кроны нами рассчитаны с использованием относительного показателя – доли ДЗ в массе кроны по данным В. С. Золотухина (1962, 1963).

Если масса как кроны в целом, так и ДЗ, на 1 га, по В. С. Золотухину (1962, 1963), имеет существенные различия по классам бонитета при одном и том же возрасте, увеличиваясь от худших к лучшим условиям местообитания, то при взятии относительного показателя – доли ДЗ в кроне, эти различия исчезают (t < 2). В итоге мы получили однофакторную зависимость

%Д3 =
$$\exp(4,8616 - 0,1880 \ln A); R^2 = 0,866,$$
 (1)

где %Д3 – доля массы Д3 в кроне в свежесрубленном состоянии, %; А – возраст древостоя, лет. Уравнение (1) действительно при А > 10 лет, доля Д3 в кроне в среднем составляет 50 %. Протабулировав уравнение (1) по значениям возраста древостоев и используя известные показатели Д3 на 1 га, рассчитали для каждой из 43 пробных площадей массу скелета кроны, не учтенную при взвешивании Д3.

В таблицах биопродуктивности приводится обычно масса фотосинтезирующих (хвоя) и нефотосинтезирующих (ствол, ветви, корни) органов раздельно. Поэтому необходимо вычленить массу хвои из массы ДЗ и перевести ее в абсолютно сухое состояние. Понятие ДЗ со временем изменялось. Вначале была уже упомянутая придержка по длине охвоенного побега, затем – по диаметру (0,8 или 1,0 см) и, наконец, был введен на ДЗ отраслевой стандарт. Тем не менее доля хвои в ДЗ – один из наименее изменчивых показателей в морфоструктуре кроны. Установлено, например, что для сосны естественного и искусственного происхождений варьирование этого показателя на уровне отдельной ветки находится в преде-

163

лах лишь 2-5 % (Усольцев, 1988,а), а на уровне кроны дерева в целом вследствие усреднения оно и того меньше. Среднее содержание массы листвы в массе ДЗ в свежем состоянии составляет у сосны обыкновенной - 0,67 (Усольцев, Макаренко, 1978), у ели сибирской - 0,67 (Поздняков, 1985), у пихты сибирской - 0,67 (Поздняков, 1985), у березы – 0,64 (Усольцев, 1971) и у осины – 0,70 (Усольцев, 1972). Небольшие видовые различия определяются, по-видимому, биологическими особенностями пород. Для вычленения массы хвои из массы ДЗ пихты сибирской горного Алтая мы использовали выведенный Л. К. Поздняковым (1985) для пихтарников Западного Саяна коэффициент доли хвои, равный 0,67.

Суммированием массы обесхвоенной части ДЗ и массы скелета кроны, неучтенной при оценке массы ДЗ, получена масса ветвей кроны. По значениям содержания сухого вещества в хвое - 0,44 и в ветвях – 0,50 для Саян (Поздняков и др., 1969; Поздняков, 1985) для каждой из 43 пробных площадей получены показатели массы хвои и ветвей в абсолютно сухом состоянии (см. табл. 1).

Материалы В. С. Золотухина (1963) были использованы далее для выявления доли коры в массе стволов. Протабулировав уравнение В. С. Золотухина (1963)

$$\%$$
K = 16,497-0,1785D+0,00169D², (2)

где %K – доля коры в объеме ствола или в запасе стволовой древесины, %; D – диаметр ствола на высоте груди или средний диаметр стволов в древостое, см, по значениям среднего диаметра стволов на пробных площадях (см. табл. 1), рассчитали для каждой запас древесины и коры стволов, M^3 га. По значениям базисной (условной) плотности – 0,350 для древесины и 0,330 для коры (Поздняков, 1985) - получена масса древесины и коры стволов в абсолютно сухом состоянии (см. табл. 1).

Поскольку для горного Алтая нет данных о фитомассе корней и нижних ярусов пихтарников, были привлечены данные 20 пробных площадей Л. К. Позднякова (1975), И. Е. Кузикова (1979), П. М. Ермоленко и Л. Г. Ермоленко (1982), П. М. Ермоленко (1983), полученные в Саянах, которые вместе с Алтаем образуют Алтае-Саянскую горную провинцию.

По итоговому массиву данных фитомассы 63 пробных площадей рассчитаны многофакторные регрессии общего вида (табл. 2)

$$P_i/M$$
 или $P_i = f(A, D, H, N, M),$ (3)

где P_i - фитомасса i-й фракции (P_s , P_{sb} , P_F , P_B , P_R и P_U – соответствен-

но стволов с корой, коры стволов, хвои, ветвей, корней и нижних ярусов растительности) в абсолютно сухом состоянии, τ /га; H – средняя высота древостоя, M; N – число стволов на 1 га, тыс. $3\kappa3$ /га.

Для лучшего согласования между собой фракций фитомассы лесного ценоза применена рекурсивная "цепочка" некоторых уравнений вида (3), в которой зависимая переменная предыдущего выступает в качестве независимой переменной последующего уравнения (Усольцев, 1998,6).

В нашем примере в качестве таких совместно зависимых переменных использованы P_s и $P_{\scriptscriptstyle E}$ (см. табл. 2).

Таблица 2 Характеристика уравнений (3)

		<u>-</u>													
Обозначения констант и показателей	Значения констант при независимых переменных и показателей адекватности														
адекватности	ln(P _s)	ln(P _{SB})	ln(P _F /M)	$ln(P_B/M)$	ln(P _R /M)	P _u									
\mathbf{a}_{0}	-1,0533	-2,1900	-12,327	0,8375	2,0429	0,7921									
a,A	-	-	-	-	-	0,0151									
$a_{2}(\ln A)$	-	-	6,1017	-	-	-									
$a_3(\ln A)^2$	-	-	-0,7720	0,0251	-	-									
$a_{4}(lnD)$	0,1146	0,5278	-2,1102	-1,5307	-2,6869	-									
a _s (lnH)	-	0,2246	1,1343	-0,4305	1,1120	-									
$a_{s}(\ln N)$	0,0408	0,4290	-0,5237	-0,8830	-0,9948	-									
$a_{7}(\ln M)$	0,9344	-	-	-	-	l -									
a (ln Ps)	-	0,5568	-	-	-	-									
$a_{\rm o}(\ln P_{\rm F})$	-	-	-	0,6441	-	-									
Стандартная															
ошибка	0,021	0,048	0,106	0,076	0,129	0,705									
R ²	0,997	0,982	0,886	0,896	0,716	0,335									

Все константы уравнений (см. табл. 2) значимы на уровне t_{05} и выше. Изменчивость фракций надземной и подземной фитомассы объясняется выбранной структурой уравнений на $71,6-99,7\,\%$, за исключением фитомассы нижних ярусов (33,5 %). Последовательным табулированием уравнений (3) (см. табл. 2) по значениям A, H, D, N и M, приведенным в ТХР пихтарников горного Алтая (Хайтович, 1980), получены таблицы возрастной динамики фитомассы по классам бонитета (табл. 3).

Таблица З 1126-Гадиской голиой пловинни

Bcero 28,7 42,1 72,0 100,7 127,6 127,6 151,5 69,4 34,4 56,4 89,6 124,6 150,8 184,3 206,6 229,1 247,5 225,6 Возрастная динамика абсолютно сухой фитомассы пихтарников Алтае-Саянской горной провинции **P** 3,5 4,0 4,7 5,5 6,4 7,4 8,6 11,6 11,6 3,0 6,4 7,7 7,7 8,4 9,8 4,6 8,9 11,4 15,1 14,8 14,8 22,7 22,7 24,8 26,6 28,6 4,0 5,1 9,4 12,8 15,7 18,2 19,8 20,9 ۳. Фитомасса, т/га 1,2 2,6 5,7 9,0 11,8 14,2 15,5 16,3 1,5 4,6 7,3 11,2 11,5 11,1 17,1 18,8 20,2 21,2 22,0 22,0 P_B 11,6 44,7 7,0 9,6 12,0 11,8 111,7 111,7 111,0 1,4 2,8 5,9 8,4 10,0 10,8 10,7 4 КЛАСС БОНИТЕТА ІІ КЛАСС БОНИТЕТА P_{SB} 5,3 8,1 9,7 12,0 14,9 15,6 10,4 12,2 13,7 14,8 15,6 16,7 18,0 19,1 20,1 20,6 23,7 44,7 59,9 84,0 109,4 127,8 145,9 163,8 178,3 192,4 19,1 28,1 47,0 65,8 84,6 101,9 116,0 م *M*, _{M³}/ra 129 174 174 319 317 431 485 529 529 539 136 192 248 300 342 381 Ν. 1000/га 6,225 3,490 2,156 11,460 1,085 0,849 0,688 4,140 2,300 1,510 1,000 0,769 0,579 0,448 0,395 0,333 0,333 7,5 11,3 14,8 19,5 25,7 28,2 33,0 36,2 36,2 40,9 5,9 8,5 11,8 15,3 18,8 22,1 25,3 25,3 Ç, D 6,7 10,6 13,4 17,0 20,3 23,2 23,2 25,7 27,9 27,9 31,6 31,6 5,8 7,2 111,1 14,3 17,2 19,6 21,6 23,4 H. лет Ą 20 30 40 50 60 70 70 80 100 110 28489888

Продолжение табл.

ie maon.	Всего	200,6	213,3	222,8		23,5	36,2	56,3	77,5	6,76	115,9	129,6	143,3	155,2	166,3	171,8		18,1	27,6	41,4	58,1	74,7
троооложение	P_{v}	10,0	11,6	13,5		3,0	3,5	4,0	4,7	5,5	6,4	7,4	8,6	10,0	11,6	13,5		3,0	3,5	4,0	4,7	5,5
r/ra	P _R	22,1	23,3	24,2		3,1	4,6	7,2	10,0	12,2	14,0	15,1	16,2	17,0	18,0	18,3		2,1	3,3	5,1	7,2	9,3
Фитомасса,	P _B	17,0	17,5	17,5		1,0	2,2	4,2	9,9	8,7	10,4	11,4	12,3	12,7	13,2	12,8		0,7	1,5	2,9	4,7	6,4
0	P_{F}	9,6	9,1	8,5	A III	1,1	2,6	4,7	8,9	7,9	8,4	8,2	7,9	7,4	7,0	6,3	A IV	8,0	1,8	3,3	4,9	6,1
	P _{SB}	16,4	17,1	17,6	нитет	4,1	5,4	7,2	8,7	10,1	11,3	12,2	12,9	13,6	14,1	14,4	НИТЕТ	3,4	4,3	9,6	7,0	8,3
	P_{S}	141,9	151,8	159,1	ACC BO	15,3	23,3	36,2	49,4	63,6	76,7	87,5	98,3	108,1	116,5	120,9	ACC BO	11,5	17,5	26,1	36,6	47,4
M.	M³/ra	419	449	471	KJ.	43	99	104	143	185	224	256	288	317	342	355	7	32	49	74	105	137
N,	1000/ra	0,469	0,425	0,403		8,150	4,750	3,050	2,125	1,490	1,137	0,888	0,715	0,595	0,522	0,485		10,82	5,750	3,745	2,655	1,972
D,	СМ	32,1	34,2	35,5		4,9	7,0	9,5	12,0	15,1	18,0	21,0	23,9	26,8	29,0	30,4		4,1	0,9	8,0	10,1	12,3
Н,	×	25,1	26,4	27,3		4,5	6,5	0,6	11,6	13,9	15,9	17,6	19,0	20,4	21,5	22,2		3,5	5,1	7,1	9,2	11,2
Ą	лет	100	110	120		70	30	4	20	09	20	80	8	100	110	120		20	30	40	20	09

Окончание табл.

~					_													
Окончание табл. 3	Всего	93,3	106,0	117,6	129,6	134,3	138,9		20,5	28,7	39,1	50,1	58,9	66,5	74,7	80,4	85,3	90,3
Окончан	P _U	6,4	7,4	9,8	10,0	11,6	13,5		3,5	4,0	4,7	5,5	6,4	7,4	9,8	10,0	11,6	13,5
r/ra	A «	11,4	12,3	13,7	16,3	15,1	15,3		2,2	3,1	4,4	5,8	6,7	7,4	8,0	8,3	8,5	8,9
Фитомасса, т/га	. P _B	8,2	8,8	6,6	11,7	10,5	10,2		1,0	1,7	2,7	3,8	4,6	2,0	2,6	5,7	5,7	9,6
0	ď	7,0	7,0	6,9	7,1	6,1	5,5	> Y	1,2	2,0	2,9	3,7	4,1	4,1	4,1	3,8	3,5	3,2
	P _{SB}	7,6	10,9	11,3	11,4	12,2	12,4	НИТЕТ	3,4	4,3	5,2	6,1	8,9	7,5	8,0	8,4	8,7	0,6
	Ps	60,3	70,5	78,5	84,5	91,0	94,4	ACC BC	12,6	17,9	24,4	31,3	37,1	45,6	48,4	52,6	26,0	59,1
M,	M³/ra	175	205	229	248	566	276	5	35	20	69	68	106	122	139	151	191	170
ν.	1000/ra	1,493	1,273	0,987	0,839	0,767	0,698		7,200	4,670	3,310	2,590	2,028	1,680	1,432	1,245	1,134	1,060
D,	СМ	14,9	17,1	19,4	20,4	22,7	24,0		5,0	6,7	8,4	6,6	9,11	13,2	14,7	16,1	17,2	18,0
Н,	Σ	13,4	15,0	16,2	. 17,2	18,0	18,5		3,8	5,2	6,7	8,1	9,4	10,4	11,2	11,8	12,2	12,7
Ą	лет	70	80	8	100	110	120		30	4	20	9	20	08	8	100	110	120

ЛИТЕРАТУРА

Ермоленко П. М. Динамика надземной массы древесного яруса в производных фитоценозах Западного Саяна // Структурно-функциональные взаимосвязи и продуктивность фитоценозов. Красноярск: ИЛиД СО АН СССР, 1983. С. 32-40.

Ермоленко П. М., Ермоленко Л. Г. Фитомасса производных лесных фитоценозов в черневом подпоясе Западного Саяна // Формирование и продуктивность лесных фитоценозов. Красноярск: ИЛиД СО АН СССР, 1982. С. 32-40.

Ефимович Е. А., Никитин К. Е. Выход пихтовой лапки в лесах Алтая Казахстана и производство пихтового масла // Тр. по лесн. опыт. делу (отчет). Семипалатинск: Казахская лесная опытная станция ВАСХНИЛ-ВНИЛАМИ, 1934. 77 с.

Золотухин В. С. Производительность кроновой массы пихтовых насаждений Восточно-Казахстанской области // Научно-производственная конференция по лесному хозяйству: Реф. докл. Алма-Ата: КазСХИ, 1962. С. 123-126.

Золотухин В. С. Методы рационального использования лесосечного фонда в пихтовых древостоях Восточно-Казахстанской области: Автореф. дис.... канд. с.-х. наук. Алма-Ата: КазСХИ, 1963. 27 с.

Кузиков И. Е. Изменение фитомассы в пихтарниках зеленомошного типа леса в различных климатических условиях Средней Сибири: Автореф. дис... канд. с.-х. наук. Красноярск: СибТИ, 1979. 24 с.

Поздняков Л. К. Продуктивность лесов Сибири // Ресурсы биосферы: Итоги советских исследований по Международной Биологической Программе. Л.: Наука, 1975. Вып. 1. С. 43-55.

Поздняков Л. К. (ред.). Методические рекомендации по разработке таблиц для комплексного учета лесных растительных ресурсов Сибири. Красноярск: ИЛиД СО АН СССР, 1985. 50 с.

Поздняков Л. К., Протопопов В. В., Горбатенко В. М. Биологическая продуктивность лесов Средней Сибири и Якутии. Красноярск: Книжное изд-во, 1969. 155 с.

Смирнова К. М. Круговорот азота и зольных элементов в ельниках сложных // Вестник МГУ. 1951. № 10. С. 103-122.

Усольцев В. А. Взаимосвязь некоторых таксационных элементов кроны и ствола у березы пушистой в Северном Казахстане // Вестник с.-х. науки (Алма-Ата). 1971. № 2. С. 80- 84.

Усольцев В. А. Вес кроны березы и осины в насаждениях Северного Казахстана // Вестник с.-х. науки (Алма-Ата). 1972. № 4. С. 77-80.

Усольцев В. А. Принципы полифакториальной оценки биопродуктивности древостоев. Красноярск: ИлиД СО АН СССР, 1985. 48 с.

Усольцев В. А. Принципы и методика составления таблиц биопродуктивности древостоев // Лесоведение. 1988,а. № 2. С. 24-33.

Усольцев В. А. Рост и структура фитомассы древостоев. Новосибирск: Наука, 1988 б. 253 с.

Усольцев В. А. О вкладе российских ученых в формирование банка данных о фитомассе лесов // Лесная таксация и лесоустройство: Межвуз. сб. научн. тр. Красноярск: СибГТУ, 1998 а. С. 50- 55.

Усольцев В. А. Формирование банков данных о фитомассе лесов. Екатеринбург: Изд-во УрО РАН, 1998 б. 541 с.

Усольцев В. А., Макаренко А. А. Возрастная динамика формирования надземной фитомассы сосны кустанайских боров в зависимости от густоты // Вестник с.-х. науки Казахстана. 1978. № 12. С. 105- 111.

Усольцев В. А., и др. Регрессионные модели и таблицы древесной зелени деревьев пихты сибирской // Леса Урала и хозяйство в них. Вып. 17. Екатеринбург: УГЛТА, 1994. С. 128- 154.

Хайтович М. Л. Ход роста насаждений пихты сибирской в Восточном Казахстане // Справочник по таксации лесов Казахстана. Алма-Ата: Кайнар, 1980. С. 120-122.

Palumets J. Analysis of phytomass partitioning in Norway spruce // Tartu: Tartu blikool. VIII. Scripta Botanica, 1991. 95 pp.