Электронный архив УГЛТУ ЭКО-ПОТЕНЦИАЛ № 4 (12), 2015

УДК 630*52:630*174.754+630*16:582.475.4

В.А. Усольцев^{1,2}, В.П. Часовских², Д.В. Норицин²

¹Ботанический сад УрО РАН ²Уральский государственный лесотехнический университет

ВОЗРАСТНАЯ ДИНАМИКА И СТРУКТУРА ФИТОМАССЫ ДЕРЕВЬЕВ ЕЛИ И ПИХТЫ В ЛЕСАХ ЕВРАЗИИ

Для оценки фракций фитомассы дерева опубликовано множество аллометрических уравнений, различающихся по структуре и поэтому несопоставимых по древесным породам и регионам. Имеющиеся у исследователей фактические данные о фитомассе сотен тысяч деревьев разных пород мира обычно не публикуются и поэтому недоступны для анализа структуры их фитомассы. Необходима база данных о фитомассе деревьев, полученной на лесных пробных площадях. Ранее (Usoltsev et al., 2015*a*,*b*) нами были составлены базы данных о фитомассе модельных деревьев лиственницы и двухвойных сосен (подрод *Pinus*) в количестве соответственно 500 и 2540 модельных деревьев и приведены результаты их количественного анализа. Цель настоящего исследования – сформировать базу данных о фитомассе (кг) модельных деревьев ели и пихты в лесах Евразии и проанализировать ее фракционную структуру.

Объекты и методы исследования. Сформированная нами база данных о фитомассе ели и пихты включает соответственно 926 и 109 модельных деревьев, взятых на пробных площадях (рис. 1).

Рис. 1. Распределение пробных площадей, на которых выполнены измерения фитомассы деревьев ели и пихты, на территории Евразии.

Электронный архив УГЛТУ ЭКО-ПОТЕНЦИАЛ № 4 (12), 2015

Предложены две структурные формы регрессионной модели фитомассы деревьев (Усольцев, 1985):

$$\ln Pa = a_0 + a_1 \ln A + a_2 \ln D + a_3 \ln H + a_4 (\ln D \times \ln H) + a_5 (\ln N) + a_6 X, \tag{1}$$

$$\ln((Pi/Pa)100) = a_0 + a_1 \ln A + a_2 \ln D + a_3 \ln H + a_4 (\ln D \times \ln H) + a_5 (\ln N) + a_6 X,$$
(2)

где Pa — надземная фитомасса дерева в абсолютно сухом состоянии, кг; P_i - фитомасса стволов с корой, скелета ветвей, хвои и корней (соответственно Pst, Pbr, Pf и Pr), кг; (Pi/Pa)100 — доля i-й фракции к надземной фитомассе, %; A — возраст дерева, лет; H — высота дерева, м; D — диаметр ствола на высоте груди, см; N — густота древостоя, тыс. экз./га; X — бинарная фиктивная переменная, посредством которой кодированы массивы данных о фитомассе деревьев: X = 0 — для пихты, X = 1 — для ели.

С целью приведения структуры фитомассы деревьев ели и пихты к сопоставимому виду разработана рекурсивная система уравнений, в которую уравнения (1) и (2) входят в качестве конечного звена:

$$H=f(A, X) \rightarrow D=f(A, H, X) \rightarrow N=f(A, H, X) \rightarrow Vt = f(H, D, X) \rightarrow Pa$$
 или $Pi/Pa=f(A, H, D, N, X),$ (3)

где Vt – объем ствола в коре, дм³.

Результаты исследований. При расчете констант уравнений (1) и (2) оказалось, что значимость константы a_6 по Стьюденту составила для надземной фитомассы и для относительных показателей фитомассы хвои, ветвей, ствола и корней соответственно 1,67; 0,54; 1,53; 0,05 и 1,27, что меньше стандартного значения 2,00. Это означает, что в структуре фитомассы равновозрастных и равновеликих деревьев ели и пихты нет статистически достоверных различий, и поэтому бинарная переменная X была исключена при дальнейших расчетах.

Результаты последовательного расчета констант уравнений (3) сведены в табл. 1, согласно которой коэффициенты детерминации R^2 составили: для H, D, N и Vt соответственно 0,648; 0,937; 0,485 и 0,992, а для Pa, (Pf/Pa), (Pbr/Pa), (Pst/Pa) и (Pr/Pa) соответственно 0,982; 0,728; 0,553; 0,742 и 0,228. Все регрессионные коэффициенты при независимых переменных значимы на уровне P_{95} .

Таблица 1.

Характеристика уравнений (3)

Характеристика уравнении (3)									
Зависимые	Константы и независимые переменные]	
перемен- ные	a_0	$a_1 (lnA)$	$a_2(\ln A)^2$	$a_3(\ln H)$	$a_5(\ln\!D)$	$a_6(\ln H)(\ln D)$	a ₇ (lnN)	R ^{2*}	SE*
ln(H)	-6,1109	3,3918	-0,3084	-	-	-	-	0,684	0,53
ln(D)	1,4043	-0,8457	0,1158	1,0624	-	-	-	0,937	0,24
ln(N)	-0,5129	1,3839	-0,2546	-0,2028	-	-	-	0,485	0,54
ln(Vt)	-1,1966	-	-	0,5065	0,9374	0,2904	-	0,992	0,20
ln(Pa)	-0,1040	-0,0678	-	-0,4013	1,1122	0,3618	-0,0357	0,982	0,27
ln((<i>Pf/Pa</i>)100)	5,0086	-0,3989	-	-0,8218	0,4297	-	0,0491	0,728	0,33
ln((<i>Pbr/Pa</i>)100)	3,9841	-0,1212	ı	-0,6425	0,5968	-0,0971	-0,0763	0,553	0,34
ln((<i>Pst/Pa</i>)100)	2,8400	0,1601	-	0,6069	-0,2568	-0,0212	0,0325	0,742	0,16
ln((<i>Pr/Pa</i>)100)	2,1302	0,4070	-	-0,6221	0,3654	-	-	0,228	0,35

^{*} R^2 - коэффициент детерминации и SE – стандартная ошибка уравнения.

Рекурсивная система уравнений (3) протабулирована в последовательности, показанной стрелками, и получены возрастные тренды объёма ствола и компонентов фитомассы деревьев, скорректированные совместным влиянием A, H, D и N (табл. 2).

Электронный архив УГЛТУ ЭКО-ПОТЕНЦИАЛ № 4 (12), 2015

Таблица 2 Изменение объема ствола (дм³), надземной фитомассы деревьев ели и пихты (кг) и долевого участия в ней компонентов фитомассы (%) в связи со средними значениями возраста, высоты дерева, диаметра ствола и густоты древостоя

	de la constant de la								
<i>A</i> , лет	Н, м	D, см	<i>N</i> /1000, шт/га	Vt , дм 3	Ра, кг	(Pf/Pa)100	(<i>Pbr/Pa</i>)100	(<i>Pst/Pa</i>)100	(<i>Pr/Pa</i>)100
20	3,6	3,6	2,970	3,1	3,1	28,8	27,5	43,5	20,4
40	9,1	9,0	1,980	29,8	18,9	15,0	18,4	61,7	21,4
60	13,6	14,2	1,430	101,1	55,1	10,9	14,8	70,9	23,2
80	16,9	18,7	1,090	218,9	111,5	9,0	13,1	76,3	25,1
100	19,5	22,6	0,869	372,1	184,0	7,9	12,1	79,7	27,0
120	21,3	26,0	0,710	545,7	266,6	7,2	11,5	81,8	29,0
140	22,6	29,0	0,593	726,1	354,0	6,6	11,1	83,2	30,9
160	23,6	31,5	0,503	902,3	441,6	6,3	10,9	84,0	32,8
180	24,2	33,8	0,433	1067	526,1	6,0	10,8	84,5	34,7
200	24,6	35,7	0,377	1216	605,2	5,8	10,8	84,8	36,6

Очевидно, что с увеличением возраста дерева в диапазоне от 20 до 200 лет происходит перераспределение фитомассы отдельных компонентов: доля массы хвои и ветвей в надземной снижается соответственно в 5,0 и 2,5 раза, а доля ствола, напротив, возрастает вдвое. Отношение подземной фитомассы к надземной увеличивается примерно в 2 раза, но абсолютный показатель массы корней усредненного модельного дерева возрастает почти в 4 раза. За тот же промежуток времени увеличение надземной фитомассы дерева происходит более высокими темпами, примерно в 200 раз.

Необходимо отметить, что в таблице 2 совокупная доля хвои, ветвей и ствола (соответственно Pf/Pa, Pb/Pa и Ps/Pa) в надземной фитомассе не равна в итоге 100% вследствие стохастической природы полученных зависимостей и наличия существенных стандартных ошибок SE. Эти относительные показатели предназначены для ориентировочной оценки фракционной структуры надземной фитомассы деревьев ели и пихты в пределах их ареала.

Заключение. Таким образом, на основе обширного фактического материала установлено, что у усреднённых модельных деревьев ели и пихты равного возраста и одинаковых размеров нет статистически значимых различий как по абсолютной величине фитомассы, так и по её фракционной структуре. У той и другой породы происходит возрастное изменение фракционной структуры фитомассы, причём в одинаковых пропорциях.

Список использованной литературы

Усольцев В.А. Моделирование структуры и динамики фитомассы древостоев. Красноярск: Красноярский университет, 1985. 191 с. (http://elar.usfeu.ru/handle/123456789/3353).

Usoltsev V.A., Gavrilin D.S., Chasovskikh V.P. Transcontinental gradienti biomassa degli alberi nelle foreste di larici dell'Eurasia (Transcontinental gradients of larch (*Larix* Mill.) tree biomass of Eurasia) // Italian Science Review. 2015a. No. 6 (27). P. 38-42 (http://www.ias-journal.org/archive/2015/june/Usoltsev1.pdf).

Usoltsev V.A., Chasovskikh V.P., Subbotin K.S. Ristrutturazione di fitomassa di pini (*Pinus* sottogenere) in Eurasia gradienti transcontinentali (Structure of pine tree (*Pinus* subgenus) biomass in transcontinental gradients of Eurasia) // Italian Science Review. 2015b. No. 7(28). P. 35-40 (http://www.ias-journal.org/archive/2015/july/Usoltsev.pdf).

Рецензент статьи: профессор Уральского государственного лесотехнического университета, доктор с.-х. наук В. А. Азарёнок.