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Introduction
The idea of fractional powers of the Fourier operator {F }40 appears in the mathemat-

ical literature (Wiener, 1929; Condon, 1937; Kober, 1939; Bargmann, 1961; Mitra, 2001).
This idea is to consider the eigen-value decomposition of the Fourier transform F in terms of
eigen-values x, =e™? and eigen-functions in the form of the Hermite functions. The family

of FrFT {F a}“ is constructed by replacing the n-th eigen-value i, =e™'? by its a-th power

A2 =e™2 for a between 0 and 4. This value is called the transform order. There is angle pa-
rameterization {F “}2“0 where o.=na/2 is a new angle parameter. Since this family depends on

a single parameter, the fractional operators {F }40 (or {F “}ZO) form the Fourier-Hermite

one-parameter strongly continuous unitary multiplicative group FeF°=F** (or
FeFP=F ), where a®b=(a+b)mod4 (or a®p=(a+p)mod2rn) and F °=1. The identical and

classical Fourier transformations are both the special cases of the FrFTs. They correspond to
a=0(F°=1)and a=n/2 (F™2=F ), respectively.

In 1980, Namias reinvented the fractional Fourier transform (FrFT) again in his pa-
per (Namias, 1980). He used the FrFT in the context of quantum mechanics as a way to solve
certain problems involving quantum harmonic oscillators. He not only stated the standard def-
inition for the FrFT, but also developed an operational calculus for this new transform. This
approach was extended by McBride and Kerr (1987). Then Mendlovic and Ozaktas (1993)
introduced the FrFT into the field of optics. Afterwards, Lohmann (1993) reinvented the FrFT
based on the Wigner—distribution function and opened the FrFT to bulk—optics applications. It
has been rediscovered signal and image processing (Almeida, 1994). In these cases FrFT al-
lows us to extract time-frequency information from the signal. A recent state of the art can be
found by H. Ozaktas et al. (2001). In the series of papers (Labunets E. & Labunets V., 1998;
Rundblad et al., 1999 a, b; Rundblad—Labunets et al., 1999; Creutzburg et al., 1999; Ozaktas
et al., 2001), we developed a wide class of classical and quantum fractional transforms. In this
paper, are introduced the infinitesimal Fourier transform and discussed the relationship of the
fractional Fourier transform to the Schrodinger operator of the quantum harmonic oscillator.
Up to now, the fractional Fourier spectra F* =F * {f}, i=12,..,M, has been digitally comput-

ed using classical approach based on the FFT. This method maps the N samples of the origi-
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nal function f tothe NM samples of the set of spectra {F}Ml which requires MN (2+log, N)

multiplications and MNlog, N additions. This paper develops a new numerical algorithm,

which requires 2MN multiplications and 3MN additions and which is based on the infinitesi-
mal Fourier transform.

Eigen-decomposition and fractional discrete transforms

The eigen—decomposition (ED) is a tool of both practical and theoretical importance in
digital signal and image processing. The ED transforms are defined following way. Let
F=[F ()], , be an arbitrary discrete symmetric (NxN)-transform, i, and ¥,(t),
n=01...N-1, be its eigen—values and eigen-vectors, respectively. Let
U=[w,(i) | w,(i) || ¥..(i)] be the matrix of eigen-vectors of the F —transform. Then
U"'FU=Diag{2,}. Hence, we have the following eigen—decomposition: F =[F (i)]=UAU".
Definition 1 [12--16]. For an arbitrary real numbers a,,...,a, , we introduce the multi—
parametric F —transform

F o) = u{diag(ry ... 01 U™ (51)

If a =...=a,,=a then this transform is called fractional F —transform. For this transform we
have

F*=U{diag(13,... A0, )| U =UA U™ (52)

The zeroth-order fractional F —transform is equal to the identity transform:
F°=UA°U"=UU™ =1 and the first-order fractional Fourier transform operator F*=F is
equal to the initial F —transform F*=uAU™.

The families {F (>} and {F*} _ form multi- and one-parameter continuous uni-

(6t enstyg JERM

tary groups with multiplications F - (o)

=F (oo datha) gnd F2EP =F* Indeed, F*F®=UA*U*.UA"U?= —UA* U =F** and
E (ao,...,aN,l)F (by,bys)
U{diag (1 ..., 251 )} U™ U{diag(ay,... A% )} U™ =
= U{diag(rg™,... Afa ™ JfU = F (oot

Let F =[F,(i)],,, be discrete Fourier (N xN)—transform (DFT), thenx, e’ e {+1,+j} and

i=0
{v, (t)}::: are the Kravchuk polynomials. Integer values of a for F* simply correspond to

repeated application of the ordinary DFT and negative integer values correspond to repeated
application of the inverse DFT. For instance, F 2 =FF corresponds to the Fourier transform of
the Fourier transform F*f =F (Ff) and F 2 =F 'F *corresponds to the inverse Fourier trans-

form of the inverse Fourier transformnF 2f =F *(F *f).
Definition 2. The multi—parametric and fractional DFT are
F (o) U{diag(ej"oa*)’z,ej"la“2 ...,ej“(N'l)a“'l’z)} U,
Fo= U{diag(ej“”a’z)} u?
and
e {diag (e“’“" el glN Ve )} Ul F*:= U{diag(ej”“)} Ut

in @ —and & —parameterizations, respectively.
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The parameters (a,,...,a,,) and a can be any real value. However, the operators F (%)
and F ® are periodic in each parameter with period 4 since F# =1 and hence

vt () g (20802 ang Faps JE % \vhere o ®b, = (3 +b)mod4, Vi=01..,N-1.

Consequently, the ranges of (a,...,a,,) and a are (z/4z)" =[0,4]" (or [-2,2]") and
Z/4z=[0,4] (or [-2,2]).

In the case of a - parameterization we have o, B, = (o +B;)mod 2z, Vi=0,1,..,N -1. Conse-
quently, the ranges of (a,,...,o,,) and a are (z/2rz)" =[0,2n)" (or [-r,x)" ) and

Z/2rnzZ=[0,2r) (or [-=,=)), respectively.
Canonical FrFT

The continuous Fourier transform is a unitary operator F that maps square-integrable
functions on square-integrable ones, and is represented on these functions f(x) by the well-
known integral:

1 i
(Ff)(y):Eij(x)e X ix. (53)
Relevant properties are that the square (F 2f )(x) = f(—x) Is the inversion operator, and that its

fourth power, (F *f)(x) = f(x), is the identity; hence F°=F .. The operator F thus gener-

ates a cyclic group of order 4. Bargmann (1961) extended the Fourier transform and he gave
definition of the FrFT, one based on Hermite polynomials as an integral transformation. If

n e d

H,(x) is a Hermite polynomial of order n, where H, (x)=(-1)"e e* , then for

X"
1

J2'nidm

neN,:={012,..}, functions ¥ (x)= H,(x)e™"? are eigen—functions of the Fourier

transform

LT
J=n

1 v TYX -
F¥,(x)] =2—n:|;‘1’n (x)e™dx=1,¥,(y)=¢ 2%, (y)
with &, = j" —¢ 2" being the eigen—value corresponding to the nth eigen—function.
According to Bargmann the fractional Fourier transform F“=[K*(xy)] is defined through its
the eigen-functions as

K (x,y) =U {diag (7 )JU ™ = 2 e ™, (), (y), (54)
Hence,
S o (eey) e H (XH,
Ka(x’y):ge_ﬂx lI,n(X)lIll‘l(y):e( )nzo+!x\)/;(y)=
1 2Xye*ia_efzja(x2+y2) (X2+y2) (55)
h o P = Xy~
NN 1-e™ 2

where F*(x,y) is the kernel of the FrFT. In the last step is used the Mehler formula (Gold-
stein, 1985)

w e—jaan(X)Hn(y) B 1 oxp zxyefja_e—Zja(Xz_Fyz)
n=0 2"!’1!«/; \/; f_e2ic 1_g2® .

Expression (5) can be rewritten as

KE(xy)= Vl_ jzjcom exp{Zsijnoc [(Xz i yz)COS(x—ny]},
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where a=nz (or o=2z). Obviously, a functions ¥, (x) are eigen—functions of the fractional
Fourier transform F [, (x)]=e"™W, (x) corresponding to the n-th eigen-values

e, n=0,12... The FrFT is F* a unitary operator that maps square-integrable functions f (x)
on square--integrable ones
Fo(y)=(F f)(y) =] _ FOOK"(xy)dx=
e%(%d*“J j f( ) { J |:( 2 2) 2 :|}d
=— X)EXPy —/— X"+ Yy )COSa — 2ZXy X.
./27z|sin a R 2sina

There exist several algorithms for fast calculation of spectrum of the fractional Fourier trans-
form F(y). Butall of them are based on the following transform of the FrFT:

7j(£dia) . 5 Cosa
2\2

F(y)=(F“f)(» ==

—emj {f(x)eszm}‘wdx=
=A(y)-F {f(x)-B,(X)}(y),
,i'(ﬁ(;fa) jy2 S8 2

g 2sina iXe
' Ba(x):e 2

ot

where A (y) S
Let us introduce the uniformly discretization (or sampling) of the angle parameter o

on M discrete values {a,,a,,... 0,0, 0y, ), WhEre o, =a; +Aa, o, =iAc and Aa=2n/M.

The set of M spectra {F(y),F*(y),...F™*(y)} can be computed by applying the following

sequence of steps for all {o,,0,,...,00} -

1. Compute products f(x)B, (x), which require N multiplications.

2. Compute the Fast Fourier Transform (FFT) of Nlog, N multiplica-
tions and additions.
2. Multiply the result by A (y) (N multiplications).
This numerical algorithm requires MN(2+log, N) multiplications and MNlog, N additions.

Infinitesimal Fourier Transform

In order to construct fast multi—parametric F —transform and fractional Fourier trans-
form algorithms, we turn our attention to notion of a semigroup and its generator (infinitesi-
mal operator). Let L,(R,C) be a space of complex-valued functions (signals) and let Op(L,)
be the Banach algebra of all bounded linear operators on L,(R,C) endowed with the operator
norm. A family {U(a)} ., <Op(L,) is called a Hermite group on L,(R,C) if it satisfies Abel's
functional equation:

U(a+B)=U(a)U(pB) forall a,p R,

u@)=I
and the orbit maps «—F“=U(a){f} are continuous from R into L,(R,C) for every
f eL,(R,C).
Definition 3 (Goldstein, 1985). The infinitesimal generator A(0)of the group {U(e)},_,and
infinitesimal transform U(de) are defined as follows:

AQ0) = %gx) , U(da) =1 +dU(0) = | +A(0)da.

a=0

Obviously,
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oU(a)

U(e, +da) = U(e,) +dU(e,) = U(e,) + da=
o

%o

=U(e,) +A(e,)de.
But

Ul +da) = U(day)U(et,) =[1+dU(0)]U(a,) = U(er) +%(“)
a

U(a,)da =

=U(a,) + AQ)U()da =[1+A(0)] U(a, ) de.
Hence, A(a,) = A(0)U(e,) and
Fere(y) = (U(a, +da)F ) (y) = ([1+ A(0)]U(a,)F ) (Y)da =
=[1+A)]F* (y)de.

2
Define now the linear operator H :%[s—z—xz +1j. It is known that
X

H‘Pn(x)zé[;—;—xz+l]‘Pn(x):n\Pn(x) (56)

From (4) and (6) we have

i-ZF(y)

oo :j%{F“F}(y)

=T ()] (9 ()

OF“(y) oF“(y) .
Theref =HF* =— .
erefore j = HF*(y), =) jHoa

The solution of this equation is given by

il Yy
Fa(y):{eijaHF}(y) and F% =g " —¢ : {Z[dy2 Y 1]]
Obviously,
F e = F “F < () (1+dF “)exp[-jaH ] =

=[I +8§ - da]exp(—jaH):(l — jHda)exp(—jaH),
(04
where the operator
. : 1( d?
Fe :(I—JHda)zl—JE(W—X2+1Jda (57)

is called the infinitesimal Fourier transform or the generator of the fractional Fourier trans-
forms (Griffths, 2002).
Let us introduce the multiplication operators (M, f)(x)=xf(x) and (M,F)(y)=yF(y). Using

the Fourier transform (3), the first of ones may be writtenas M, =F (%}F . Obviously,

2
X* =M} =-F [%jF . Then
y

2 2
I:dazl—j1 d—2+F d—z F71+1 da.
2{ dx dy

Discretization of x-domain with the interval discretization Ax is equal to the periodization of
y -domain with the period periodization 2z/Ax

2 2 2 2
%ﬁLF (;_ZJF “+1->D,, {%}+F (PZE,AX L;j—ZDF il
X y X y
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Discretization of y -domain with the interval discretization Ay is equal to the periodization of
x -domain with the period periodization 2z/Ay

d2 d> .
P,y 10, D {W} F {PMX D,, {WDF 41,

An approximation for the second derivative can be given by the second order central differ-
ence operator

PZn/AyDAx (d_zz fJ(n) z(f(n$ 1)_2f(n)+ f(n@l)),
dx N N

d2
ParraDay (W Fj(k) ~ (F(k% 1)-2F (k) + F(k eNal)),
where N =27z/AxAy and indices are taken modulo N . On the other hand,

[F {PMAXDAY %}F lfJ(n) z(F [F(kSD-2F(+F(k®D |F ’1)(n) =

= ( f (n)ef%in —2f(n)+f (n)ezN”i”j =2f (n)(cos(% nj—lj.

2
These allow one to give the approximation for H =%(%—x2 +1J as follows
X

1( d? 2 ~
Hf (x) ={E[W—X +1ﬂ f(x)~
z%{[f(n% H-2f(n)+ f(n(?l)}+2f(n)[cos(%nj—lj+ f(n)}=

o 1 1
:—[coswn—ﬂ f(n)+§[f(n% 0+ f(n(?l)].

In the N-diagonal basis we have
Fof(x)~

[ f@) | [-1/2 1/2 . . TP )
Q) 1/2 | cos(1Q)-3/2 1/2 . ()
| @  in 1/2 cos(20)-3/2 1/2 . f(2) (58)
f(3) . . 12 cos(3Q)-3/2|1/2| . f(3)
: . . . 1/2 o1 :
| f(N-1)] 172 : . . U2 =12 f(N-1) |

where Q=27/N .
Let us introduce the uniformly discretization (or sampling) of the angle parameter o
on M discrete values {o,,a,....0, 0,00y}, WHEre o, =a; +Aa, o, =iAa. and
Ao =2r/M.Then
Fei(y) = F9 (y) = F (k) + jAax

2 3 ai 1 o [
x{[cosﬁk—ﬂF (k)+E[F (k$ 1)+F (k?l)}}.

It is easy to see that this algorithm requires 2MN multiplications and 3MN additions
VS. MN (2+log, N) multiplications and MN log, N additions in the classical algorithm.

(59)

In (8) we used O (h?) approximation[;—;f](k)z(f(k—l)—Zf(k)+f(k+1)). Finer approxima-

tionso(h*) also can be used (Candan, 1998).
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Conclusions
In this work, we introduce a new way of computing for Fractional Fourier transforms
based on the infinitesimal Fourier transform. 2MN multiplications and 3MN additions are
necessary vs. MN(2+log, N) multiplications and MNlog, N additions in the classical algo-

rithm. Presented algorithm can be utilized for fast computation in most applications of signal
and image processing. We have presented a definition of the infinitesimal Fourier transform
that exactly satisfies the properties of the Schrodinger Equation for quantum harmonic oscilla-
tor.
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