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Introduction 

 

We develop a conceptual framework and design methodologies for multichannel image 

median filtering systems with assessment capability. The term multichannel (multicomponent, 

multispectral, hyperspectral) image is used for an image with more than one component. They 

are composed of a series of images in different optical bands at wavelengths 
1 2, ,..., K   , 

called spectral channels:  
1 2

( , ) ( , ), ( , ),..., ( , ) ,
K

x y f x y f x y f x y  f  where K  is the number of dif-

ferent optical channels, i.e., 2
,( , ) : Kx y f R R  where KR  is multicolor space. 

Let us introduce the observation model and notion used throughout the paper. We consider 

noise images of the ( ) ( ) ( ),f x s x η x
 

where ( )s x  is the original K -channel image 

 1 2( ) ( ), ( ),..., ( )Ks s ss x x x x  and ( )η x  denotes the K -channel noise  1 2( ) ( ), ( ),..., ( )K  η x x x x  

introduced into the image ( )s x  to produce the corrupted image  1 2( ) ( ), ( ), , ( ) .Kf f ff x x x x  

Here, 2( , )i j x Z  is a 2D coordinates. The aim of image enhancement is to reduce the noise 

as much as possible or to find a method, which, given ( )s x , derives an image ˆ( )s x  as close as 

possible to the original ( )s x  subjected to a suitable optimality criterion. In a 2D standard line-

ar and median scalar filters with a square N -cellular window 
( , )M ( , )i j m n  and located at ( , ),i j  

the mean and median replace the central pixel 

 
( , )( , )

( , ) ( , ) ,
i jm n M

s i j f m n


 Mean      (1) 

 
( , )( , )

( , ) ( , ) ,
i jm n M

s i j f m n


 Med       (2) 

where ( , )s i j  is the filtered grey-level image,  
( , )( , )

( , )
i jm n M

f m n


 is an image block of the fixed 

size N  extracted from f  by moving N -cellular window 
( , )M i j

 at the position ( , )i j , Mean  and 

Med  are the mean (average) and median operators.  

Median filtering has been widely used in image processing as an edge preserving fil-

ter. The basic idea is that the pixel value is replaced by the median of the pixels contained in a 

window around it. In this work, this idea is extended to vector-valued images, based on the 

fact that the median is also the value that minimizes the 
1L  distance in R  between all the 

gray-level pixels in the N -cellular window (Fig.1). 
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Fig.1. Distances from an arbitrary point c  to each point 1 2, ,..., Nx x x R

 
from 9-cellular 

window. 

In multichannel case, we need to define a distance   between pairs of objects on the domain 
KR . Let ,K R  be a metric multicolour space, and ( , ) x y  is a distance function for pair of 

objects x  and y  in KR  (that is, ( , ) : K K  x y R R R ). Let 1 2, ,..., Nw w w  be N  weights sum-

ming to 1 and let 1 2, ,..., N Kx x x R  be N  observations (for example, N  pixels in the N -cellular 

window). 

Definition 1 (Fréchet, 1948; Bajaj, 1986; 1988). The optimal Fréchet point associated 

with the metric ( , ) x y  is the point, K

opt c R  that minimizes the Fréchet cost function 

 
1

,
N i

ii
w 

 c x  (the weighted sum distances from an arbitrary point c  to each point 1 2, ,..., N
x x x ). 

It is formally defined as 

   1 2

1

| , ,..., min , .
K

N
N i

opt i

i

w 




 
   

 


Rc
c FrechPt x x x arg c x=         (3)  

Note that minarg means the argument, for which the sum is minimized. In this case, it 

is the point 
optc  from KR , for which the sum of all distances to the i

x 's is minimum. So, the 

optimal Fréchet point of a discrete set of the observations ( N  pixels) in the metric space 

,K R  is the point minimizing the sum of distances to the N  pixels (Fig. 2).  

 
Fig. 2. Distances from an arbitrary point c  to each point 1 2, ,..., N Kx x x R  from 9-cellular window. 

 

This generalizes the ordinary median, which has the property of minimizing the sum 

of distances for one-dimensional data. The properties of this point have been extensively 

studied since the time of Fermat, (this point is often called the Fréchet point (Fréchet, 1948) 

or Fermat-Weber point (Chandrasekaran, Tamir, 1990). In this paper, we extend the notion of 

Fréchet point to generalized Fréchet point which minimizes the aggregation Fréchet cost 

function (AFCF) in the form of an aggregation function  1 ,cf N i

i iw 
 
 

Agg c x , instead of the or-

dinary sum (3):  
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    1 2

1, | , ,..., min , .
K

cf N cf N i

opt i iw 


  
 Rc

c FrechPt Agg x x x arg Agg c x=       (4)  

Moreover, we propose use an aggregation distance  ,
Agg c x  instead of the classical distance 

 . It gives new cost function 

     1 2

1 2, , , ,..., ,cf N

Nw w w   
 

Agg Agg c x Agg c x Agg c x
 

and new optimal Fréchet point associated with the aggregation distance  ,
Agg c x  and the ag-

gregation Fréchet cost function cf
Agg

 
 1 2, | , ,...,cf N

opt

 c FrechPt Agg Agg x x x=  

  1min , .
K

cf N i

i iw 




  
 Rc

arg Agg Agg c x                         (5) 

We use generalized Fréchet point for constructing new nonlinear filters. When filters (1) are 

modified as follows: 

 
( , )( , )

ˆ , , | ( , ) ,
i j

cf

m n M
i j m n


   s FrechPt Agg Agg f=                                          (6) 

it becomes Fréchet aggregation mean filters. They are based on an arbitrary pair of aggrega-

tion operators cf
Agg  and  ,

Agg c x , which could be changed independently of one another. 

For each pair of aggregation operators, we get the unique class of new nonlinear filters. 

 

The suboptimal weighted Fréchet median 

 

In computation point view, it is better to restrict the infinite search domain from KR  
until the finite subset  1 2, ,..., N K x x x RD . In this case, we obtain new definition of the subop-

timal Fréchet point or the optimal Fréchet median. 

Definition 2. The suboptimal Fréchet point (or optimal Fréchet median) associated with 

the metric ( , ) x y  is the point ˆc D  that minimizes the FCF over the the restricted search do-

main KD R  

   1 2

1

ˆ | , ,..., min , .
N

N i

opt i

i

w 
 

 
   

 


c D

c FrechMed x x x arg c x=                             (7) 

We use the generalized Fréchet point and median for constructing new nonlinear filters. When 

filters (1)-(2) are modified as follows:  

 
( , )( , )

( , ) | ( , ) ,
i jm n M

s i j f m n


 FrechPt      (8) 

 
( , )( , )

( , ) | ( , )
i jm n M

s i j f m n


 FrecMed       (9) 

it becomes Fréchet  mean and median filters, associated with the metric ( , ) x y . 

Example 1. If observation data are real numbers, i.e., 1 2, ,..., Nx x x R , and the distance func-

tion is the city distance 1( , ) ( , ) ,x y x y x y     then the optimal Fréchet point (3) and median 

(7) for data 1 2, ,..., Nx x x R  to be the classical Fréchet point and classical median, respectively. 

They are associated with the city metric 1( , ), x y  i.e., 

1 2

1
(m,n) M(i, j)

1

( | , ,..., ) min ,
N

N i

opt

i

c x




 
   

 


c R
c FrechPt x x x arg                               (10) 

 

 

1 2

1

1 2

1

ˆ | , ,...,

min , ,..., .

N

opt

N
i N

i

c

c x x x x




 

 
   

 


c D

FrechMed x x x

arg Med

=

                                      (11) 

In this case, filter (8) is optimal maximum likelihood filter for Laplace noise, and 

filter (9) is ordinary median filter. 

Example 2. If observation data are vectors, i.e.,  
1 2, ,..., N Kx x x R  and the distance function 

is the city distance 1 1
( , ) ( , ) ,  x y x y x y   then the Fréchet point (3) and median (8) for vec-
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tors 1 2, ,..., N Kx x x R  to be the Fréchet point (vector) and vector median, respectively, associat-

ed with the same metric 1( , ) x y  

 1 2

1 1

1

| , ,..., min || || ,
N

N i

opt

i

c 




 
   

 
kRc

FrechPt x x x arg c x=                              (12) 

 

 

1 2

1

1 2

1 1

1

ˆ | , ,...,

min || || | , ,..., .

N

opt

N
i N

i

c 






 

 
   

 


c D

FrechMed x x x

arg c x VecMed x x x

=

                                (13) 

In this case, filter (8) is optimal maximum likelihood vector filter for Laplace noise, and filter 

(9) is vector median filter associated with city metric (Astola et al., 1990; Tang et al., 1996). 

Example 3. If observation data are vectors again: 1 2, ,..., N Kx x x R  but the distance function 

is the Euclidean 2( , ) ( , ) || ||,   x y x y x y  then the Fréchet point (3), and median (7) for vectors 
1 2, ,..., N Kx x x R  to be Fréchet point (vector) and vector median, respectively, associated with 

the Euclidean metric 2 ( , ) x y  

 1 2

2 2

1

| , ,..., min || || ,
K

N
N i

opt

i

c 




 
   

 


Rc
FrechPt x x x arg c x=                               (14) 

 1 2

2

1 2

2 2

1

ˆ | , ,...,

min || || ( | , ,..., ).

N

opt

N
i N

i

c 






 

 
  

 


c D

FrechMed x x x

arg c x VecMed x x x

=

                                   (15) 

In this case, filter (8) is optimal maximum likelihood vector filter for Gaussian noise, and filter 

(9) is vector median filter associated with Euclidean metric. 

 

Generalized vector aggregation 

 

In Definitions 1 and 2, the Fréchet point and median are points K

opt c R , 

 1 2ˆ , ,..., N

opt  c D x x x  that minimize the Fréchet cost function (FCF)  
1

,
N i

ii
w 

 c x . But this 

sum up to constant factor is the simplest aggregation function.  

The aggregation problem consist in aggregating n-tuples of objects all belonging to a 

given set S , into a single object of the same set S , i.e., : nS SAgg . In the case of mathemati-

cal aggregation operator the set S  is an interval of the real [0,1]S   R  or integer numbers 

[0,255]S   Z . In this setting, an AO is simply a function, which assigns a number y  to any 

N -tuple  1 2, ,..., Nx x x  of numbers: 1 2( , ,..., )Ny x x x Aggreg that satisfies:  

 

   

 

     1 2 1 2 1 2

,   

( , ,..., ) . In particular, 0,0,...,0 0 and 1,1,...,1 1,  or

255,255,..., 255 255.

  , ,..., , ,..., , ,..., .

N

N N N

x x

a a a a

x x x x x x x x x

 

   



  

Agg

Agg Agg Agg

Agg

min Agg max

 

Here  1 2, ,..., Nx x xmin  and  1 2, ,..., Nx x xmax  are respectively the minimum and the maximum 

values among the elements of  1 2, ,..., Nx x x . 

All other properties may come in addition to this fundamental group. For example, if for eve-

ry permutation N S  of  1,2,..., N  the AO satisfies: 

   (1) (2) ( ) 1 2, ,..., , ,..., ,N Nx x x x x x   Agg Agg  

then it is invariant (symmetric) with respect to the permutations of the elements of 

 1 2, ,..., Nx x x . In other words, as far as means are concerned, the order of the elements of 

 1 2, ,..., Nx x x  is - and must be - completely irrelevant.  
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According to Kolmogorov (1930) a sequence of functions  1 2, ,...,N Nx x xAgg  (for different N ) 

defines a regular type of average if the following conditions are satisfied: 

1) 1 2( , ,..., )N Nx x xAgg  is continuous and monotone in each variable; to be definite, we assume 

that NAgg  is increasing in each variable. 

2) 1 2( , ,..., )N Nx x xAgg  is a symmetric function. 

3) The average of identical numbers is equal to their common value: ( , ,..., )N x x x xAgg . 

4) A group of values can be replaced by their own average, without changing the overall av-

erage: 

1 2 1 2 1 2( , ,..., , , ,..., ) ( , ,..., , , ,..., ),N M N M N M Mx x x y y y m m m y y y Agg Agg  

where 1 2( , ,..., ).N Nm x x x Agg  

Proposition 1.  (Kolmogorov, 1930). If conditions (1)–(4) are satisfied, the average 

1 2( , ,..., )N Nx x xAgg  is of the form:       

   1
1 2

1

1
| , ,..., ,

N

iN
i

K x x x K K x
N





 
 
 

 Kolm  

where K  is a strictly monotone continuous function in the extended real line.  

     We list below a few particular cases of means: 

1) Arithmetic mean ( ( )K x x ): 1 2

1

1
( , ,..., ) .

N

N i

i

x x x x
N 

 Mean  

2) Geometric mean ( ( ) log( )K x x ): 1 2

1

1
( , ,..., ) exp ln .

N

N i

i

x x x x
N 

 
  

 
Geo  

3) Harmonic mean ( 1( )K x x ): 1 2

1 1

1
( , ,..., ) .

1 1 1
N N N

i ii i

N
x x x

N x x 

 

 
Harm  

4) A very notable particular case corresponds to the function ( ) pK x x . We obtain then a 

quasi arithmetic (power or Hölder) mean of the form:  

1

1 2

1

1
, ,..., .

N p
p

p N i

i

x x x x
N 

 
  
 
Power  

This family is particularly interesting, because it generalizes a group of common means, 

only by changing the value of p . 

A very notable particular cases correspond to the logic functions (min; max; median): 

1 2( , ,..., ),Ny x x x Min 1 2( , ,..., ),Ny x x x Max 1 2( , ,..., ).Ny x x x Med  

When filters (1) and (2) are modified as follows:  

 
( , )( , )

( , ) ( , ) ,
i jm n M

s i j f m n


 Agg      (16) 

we get the unique class of nonlinear aggregation filters proposed in the works (Labunets, 

2014; Labunets et al., 2014 a,b,c). 

In this work, we are going to use the cost function in the form of an aggregation function 

       1 2

1 1 2, , , , ,..., ,cf N i cf N

i i Nw w w w   
   
   

Agg c x Agg c x c x c x  

instead of  

       1 2

1 2

1

, , , , ,..., , .
N

i N

i N

i

w w w w   


 
  c x c x c x c x  

We obtain the next generalization of the Fréchet point and median. 

Definition 3. The Fréchet aggregation point and median are the points K

opt c R
 
and 

 1 2ˆ , ,..., N

opt D c x x x  that minimize the aggregation cost function (ACF)  1 ,cf N i

i iw 
 
 

Agg c x . 

They are formally defined as 

    1

1, | ,..., min ,
K

cf N cf N i

opt i iw 


  
 Rc

c FrechPt Agg x x arg Agg c x=                          (17) 

and 
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    1

1
ˆ , | ,..., min , .cf N cf N i

opt i iw 


  
 

c D

c FrechMed Agg x x arg Agg c x=                       (18) 

Note that argmin means the argument, for which the  1 ,cf N i

i iw 
 
 

Agg c x  is minimized. In 

this case, it is the point K

opt c R  in (17) or point  1 2ˆ , ,..., N

opt  c D x x x
 
in (18) for which the 

aggregation of all distances to the i
x 's is minimum. 

When filters (1)--(2) are modified as follows: 

 
( , )( , )

ˆ , , | ( , ) ,
i j

cf

m n M
i j m n


   s FrechPt Agg f=                                        (19) 

 
( , )( , )

ˆ , , | ( , )
i j

cf

m n M
i j m n


   s FrechMed Agg f=                                       (20)  

it becomes Fréchet  aggregation mean and median filters. They are based on an aggregation 

operator cf
Agg  and a metric  , which could be changed independently of one another. For 

each pair of aggregation operator and metric, we get the unique class of new nonlinear filters. 

Example 4. If observation data are real numbers, i.e., 1 2, ,..., Nx x x R , the distance function is 

the city distance 1( , ) ( , )x y x y x y     and ACF is quadratic 

   2

1 11
, ,

Ncf N i i

i i ii
w w  
  
  Agg c x c x , then the optimal Fréchet point (17) and median (18) for 

grey-level data (numbers) 1 2, ,..., Nx x x R  to be the ordinary arithmetic mean, and quadratic 

median, respectively, i.e., 

 

 

1 2

2

2
1 2

1 1

, | , ,...,

1
min , ,..., .

K

cf N

opt

N N
i N i

i i

c x x x x x
N



 


 

 
    

 
 

Rc

c FrechPt Agg x x x

arg Mean

=

                            (21) 

 
2

1 2

1

ˆ , | , ,..., min .
N

cf N i

opt

i

c x




 
   

 


Dc
c FrechMed Agg x x x arg=                       (22) 

In this case, filter (19) is optimal maximum likelihood vector filter for Gaussian noise, and fil-

ter (20) is vector median filter associated with Euclidean metric, because 
22

2 1( , ) ( , ) .x y x y x y    . 

Example 5. If observation data are vectors, i.e., 1 2, ,..., N Kx x x R , the distance function is 

the city distance 1 1( , ) || || ,  x y x y  and ACF is the Kolmogorov mean 

   1

1 1
1

,
N

cf N i

i i i

i

w K w K 





 
     

 
Agg c x c x  

then Fréchet aggregation point and median for vectors 1 2, ,..., N Kx x x R  to be the following 

Kolmogorov-Fréchet aggregations 

   1 1

1 1

1

, | ,..., min || || ,
K

N
N

opt i

i

K K w K 




  
    

  


Rc
c FrechPt x x arg c x=                 (23) 

   1 1

1 1

1

ˆ , | ,..., min || || ,
N

N

opt i

i

K K w K 




  
    

  


c D
c FrechMed x x arg c x=               (24) 

respectively. In this case, filter (19) is the Kolmogorov--Fréchet vector mean filter, and filter 

(20) is the Kolmogorov-Fréchet vector median filter associated with sity metric. 

In Definitions 1 and 2 we used a distance function  , x y . But all known metrics have the 

aggregation form. By this reason, we can use an aggregation function  1 1 ,..., K Kc x c x  Agg
 

instead of  1 1| |,...,| |i i

K Kc x c x   . 

Definition 4. The Fréchet aggregation point and median are the points K

opt c R  and 

 1 2ˆ , ,..., N

opt  c D x x x  that minimizes the aggregation cost function (ACF) 

    1

1 , ,..., ,cf N

Nw w 
Agg Agg c x Agg c x

 
(=the weighted aggregation mean of all aggregation dis-
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tances    1 2

1 2, , , ,...w w 
Agg c x Agg c x    . . . , , N

Nw 
Agg c x

 
from an arbitrary point Kc R

 
to each 

point 1 2, ,..., N Kx x x R ). They are formally defined as 

 

  

1 2

1

, | , ,...,

min ,
K

cf N

opt

cf N i

i iw








 

  
 Rc

c FrechPt Agg Agg x x x

arg Agg Agg c x

=

                                             (25) 

and 

 

  

1 2

1

ˆ , | , ,...,

min , .

cf N

opt

cf N i

i iw








 

  
 Dc

c FrechMed Agg Agg x x x

arg Agg Agg c x

=

                                            (26) 

We use generalized Fréchet point for constructing new nonlinear filters. When filters (1) 

are modified as follows: 

 
( , )( , )

ˆ , , | ( , ) ,
i j

cf

m n M
i j m n


   s FrechPt Agg Agg f=                                            (27) 

 
( , )( , )

ˆ , , | ( , )
i j

cf

m n M
i j m n


   s FrechMed Agg Agg f=                                           (28)  

it becomes Fréchet aggregation mean and median filters. They are based on an arbitrary pair 

of aggregation operators cf
Agg  and  ,

Agg c x , which could be changed independently of one 

another. For each pair of aggregation operators, we get the unique class of new nonlinear fil-

ters. 

Example 6. For vector observation data 1 2, ,..., N Kx x x R , for L-Kolmogorov aggregation dis-

tance function   1

1
| |

K i

k kk
L L c x


 , and for ACF in the form of the K -Kolmogorov mean 

  1

1
,

N i

ii
K w K 


 
  Agg c x , we have 

    

 

1 2

1

1 1

1 1

, | , ,..., min ,

min | | ,

K

K

N cf N i

opt i i

N K
i

i k k

i k

K L w

K w K L L c x





 

 





   
 

     
      

     
 

R

R

c

c

c FrechPt x x x arg Agg Agg c x

arg

=

                         (29) 

    

 

1 2

1

1 1

1 1

ˆ , | , ,..., min ,

min | | ,

K

K

N cf N i

opt i i

N K
i

i k k

i k

K L w

K w K L L c x





 

 





   
 

     
      

     
 

R

R

c

c

c FrechMed x x x arg Agg Agg c x

arg

=

                        (30) 

where L  and K  are two Kolmogorov functions. In this case, filter (27) is the Kolmogorov--

Fréchet vector mean filter, and filter (28) is the Kolmogorov--Fréchet vector median filter as-

sociated with sity metric and with a pair of Kolmogorov ,K L  functions . 

 

Experiments 

Generalized vector aggregation filtering with , ,cf Agg Mean Med Geo  has been applied 

to noised 256x256 image “Dog” (Figures 3b,4b,5b). We use window with size 3 3.   The de-

noised images are shown in Figures 5-7. All filters have very good denoised properties. 

 

Conclusions 

A new class of nonlinear generalized MIMO-filters (vector median filters or Fréchet 

filters) for multichannel image processing is introduced in this paper. These filters are based 

on an arbitrary pair of aggregation operators, which could be changed independently of one 

another. For each pair of parameters, we get the unique class of new nonlinear filters. The 

main goal of the work is to show that generalized Fréchet aggregation means can be used to 

solve problems of image filtering in a natural and effective manner. 
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a) Original image b) Noised  images, PSNR = 21.83 
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c)

2,  cf   Agg Mean Agg , 

PSNR = 32.52  

d) 
2,  cf   Agg Med Agg , 

PSNR = 31.79, 

  
e)

2,  cf   Agg Min Agg , PSNR 

= 28.29 

f) 
2,  cf   Agg Geo Agg ,  

PSNR = 30.52 

Fig. 3. Original (a) and noised (b) images; noise: Salt-Pepper; 

denoised images (c)-(f). 

 

  
a) Original image b) Noised  images, PSNR = 17,19 

  

c) 
2,  cf   Agg Mean Agg , 

PSNR = 21.83 

d) 
2,  cf   Agg Med Agg , 

PSNR = 20.84 
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e)

 2,  cf   Agg Min Agg , PSNR 

= 19.05 

f)
 2,     Agg Geo Agg ,  

PSNR = 20.51 

Fig. 4. Original (a) and noised (b) images; noise: Gaussian PDF; de-

noised images (c)-(f). 

  

a) Original image b) Noised images, PSNR = 28.24 

  
c) 

2,  cf   Agg Mean Agg , 

PSNR = 30.68  

d) 
2,  cf   Agg Med Agg ,  

PSNR = 29.61 

  

e) 
2,  cf   Agg Min Agg , PSNR 

= 27.77 

f) 
2,  cf   Agg Geo Agg ,  

PSNR = 30.14 

Fig. 5. Original (a) and noised (b) images; noise: Laplasian 

PDF; denoised images (c)-(f). 
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