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FRECHET MIMO-FILTERS

Introduction

We develop a conceptual framework and design methodologies for multichannel image
median filtering systems with assessment capability. The term multichannel (multicomponent,
multispectral, hyperspectral) image is used for an image with more than one component. They
are composed of a series of images in different optical bands at wavelengths x,,2,

ferent optical channels, i.e., f(x,y):R*> — R, where R* is multicolor space.
Let us introduce the observation model and notion used throughout the paper. We consider
noise images of the f(x)=s(x)+n(x), where s(x) is the original K -channel image
() =(5,(x),5,(x),...5¢(x)) and n(x) denotes the K -channel noise n(x) =(n,(x),n,(x),... N« (x))
introduced into the image s(x) to produce the corrupted image f(x)=(f,(x), f,(x)...., f, (x)).
Here, x=(i, j)Z’ is a 2D coordinates. The aim of image enhancement is to reduce the noise
as much as possible or to find a method, which, given s(x), derives an image §(x) as close as
possible to the original s(x) subjected to a suitable optimality criterion. In a 2D standard line-
ar and median scalar filters with a square N -cellular window M, (m,n) and located at (i, j),
the mean and median replace the central pixel

§(i,j):(Mean [f(m,n)], @)

m,n)eM; j

s(i,j)= Med [fmn], )

(m,n)eM

where s(i, j) is the filtered grey-level image, {f(m,n)} is an image block of the fixed

(m,n)eM ;)
size N extracted from f by moving N -cellular window m

Med are the mean (average) and median operators.

Median filtering has been widely used in image processing as an edge preserving fil-
ter. The basic idea is that the pixel value is replaced by the median of the pixels contained in a
window around it. In this work, this idea is extended to vector-valued images, based on the
fact that the median is also the value that minimizes the L, distance in R between all the

gray-level pixels in the N -cellular window (Fig.1).

i, atthe position (i, j), Mean and
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Fig.1. Distances from an arbitrary point ¢ to each point x*,x?,...,x" € R from 9-cellular
window.
In multichannel case, we need to define a distance p between pairs of objects on the domain

R*. Let <RK,p> be a metric multicolour space, and p(x,y) is a distance function for pair of
objects x and y in R* (that is, p(x,y):R*xR* - R"). Let w',w’,..,w" be N weights sum-
ming to 1 and let x',x*,...x" cR* be N observations (for example, N pixels in the N -cellular
window).

Definition 1 (Fréchet, 1948; Bajaj, 1986; 1988). The optimal Fréchet point associated
with the metric p(x,y) is the point, c,, eR* that minimizes the Fréchet cost function

> wp(c.x') (the weighted sum distances from an arbitrary point ¢ to each point x,x*,...x").
It is formally defined as

Copt = FrechPt(p [ x5 %2, xN ) =arg cTFleQ (ZZ:W"D(C’ X' )j (3)

Note that argmin means the argument, for which the sum is minimized. In this case, it
is the point c,, from R*, for which the sum of all distances to the x''s is minimum. So, the

optimal Fréchet point of a discrete set of the observations (N pixels) in the metric space
<RK,p> is the point minimizing the sum of distances to the N pixels (Fig. 2).

G G

.

Fig. 2. Distances from an arbitrary point c to each point x',x*,...x" = R* from 9-cellular window.

This generalizes the ordinary median, which has the property of minimizing the sum
of distances for one-dimensional data. The properties of this point have been extensively
studied since the time of Fermat, (this point is often called the Fréchet point (Fréchet, 1948)
or Fermat-Weber point (Chandrasekaran, Tamir, 1990). In this paper, we extend the notion of
Fréchet point to generalized Fréchet point which minimizes the aggregation Fréchet cost

function (AFCF) in the form of an aggregation function “ Agg!, [ wp(c,x')], instead of the or-
dinary sum (3):
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Cop = FrechPt( Agg, p[ X', X°,..., X" ) =arg min (“f Agg", [Wip(C, X )J) (4)
Moreover, we propose use an aggregation distance ~Agg(c,x) instead of the classical distance
p . It gives new cost function
°f Agg[wl’JAgg(c,xl),wz"Agg(c,xz),...,wN * Agg(c,x" )}
and new optimal Fréchet point associated with the aggregation distance ”Agg(c,x) and the ag-
gregation Fréchet cost function “ Agg
Copt = FrechPt(Cf Agg, " Agg | X', x%,.., xN ) =

=arg min (* Agg)', [ w,- “Agg(c.x ) ]). (5)

We use generalized Fréchet point for constructing new nonlinear filters. When filters (1) are
modified as follows:

$6i,j)= FrechPt[Cf Agg, ”Agg | f(m, n)], (6)

(m,n)eM; jy
it becomes Fréchet aggregation mean filters. They are based on an arbitrary pair of aggrega-
tion operators “Agg and “Agg(c,x), which could be changed independently of one another.

For each pair of aggregation operators, we get the unique class of new nonlinear filters.
The suboptimal weighted Fréchet median

In computation point view, it is better to restrict the infinite search domain from R*
until the finite subset D={x",x,...x"} =R*. In this case, we obtain new definition of the subop-

timal Fréchet point or the optimal Fréchet median.
Definition 2. The suboptimal Fréchet point (or optimal Fréchet median) associated with
the metric p(x,y) is the point ¢ D that minimizes the FCF over the the restricted search do-

main Dc R¥
N
Copt = FrechMed(p [ X %2, xN ) =argmin (Zwip(c,xi )j (7)
ceD i=1
We use the generalized Fréchet point and median for constructing new nonlinear filters. When

filters (1)-(2) are modified as follows:
s, j) = mcmm[m f(m,n)], (8)

s(i, ) =FrecMed[p | f (m,n)] (9)

it becomes Fréchet mean and median filters, associated with the metric p(x,y) .

Example 1. If observation data are real numbers, i.e., x',x*,...x" eR, and the distance func-
tion is the city distance p(x,y)=p,(x,y)=|x-y|, then the optimal Fréchet point (3) and median
(7) for data x',x%,...,x" eR to be the classical Fréchet point and classical median, respectively.
They are associated with the city metric p,(x,y), i.e.,

N N
Co = FrechPt(p, |x!,x%,...,x") =arg rllig(izl]c— X' U (20)

(m,meM(,j)

Cope = FrechMed(p1 [xt, %2, xN ) =

=arg rpi[p(i]c—xﬂ =Med(x",x*,....x").
< \ia

In this case, filter (8) is optimal maximum likelihood filter for Laplace noise, and
filter (9) is ordinary median filter.

Example 2. If observation data are vectors, i.e., x',x%,...,x" eR“ and the distance function
is the city distance p(x,y) = p,(x,y) =|x-y|,, then the Fréchet point (3) and median (8) for vec-

(11)
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tors x',x*,...x" e R“ to be the Fréchet point (vector) and vector median, respectively, associat-
ed with the same metric p,(x,y)

N .
Cope = FrechPt(p; | X', X°,...,x" ) =arg min (;II c—X IIJ, (12)

éomsFrechMed(pl|x1,x2,,_,,xN):
y (13)
= i i — 12 N
_argrPEan(;Hc—x ||1J_VecMed(pl|x X axV).

In this case, filter (8) is optimal maximum likelihood vector filter for Laplace noise, and filter
(9) is vector median filter associated with city metric (Astola et al., 1990; Tang et al., 1996).

Example 3. If observation data are vectors again: x',x*,..,x" eR* but the distance function
is the Euclidean p(x,y) = p,(x,y)=|x-y|l, then the Fréchet point (3), and median (7) for vectors
x',x%,..,x" e R to be Fréchet point (vector) and vector median, respectively, associated with
the Euclidean metric p,(x,y)

N .
Cope = FrechPt(p, | X', %%,...,x" ) =arg min (;II c—X sz' (14)

Con = FrechMed ( p, [ x',%%,...,x" ) =
) : 15
arg miQ(Z”C—X' ||2j=VeCMEd(p2 XX, X, (15)
ce ~

In this case, filter (8) is optimal maximum likelihood vector filter for Gaussian noise, and filter
(9) is vector median filter associated with Euclidean metric.

Generalized vector aggregation

In Definitions 1 and 2, the Fréchet point and median are points c,, eR",
C €D={x"x*,...x"} that minimize the Fréchet cost function (FCF) > " wp(c,x'). But this

opt
sum up to constant factor is the simplest aggregation function.
The aggregation problem consist in aggregating n-tuples of objects all belonging to a
given set s, into a single object of the same set S, i.e., Agg:S" — S . In the case of mathemati-

cal aggregation operator the set s is an interval of the real s=[0,1]c R or integer numbers
S =[0,255] < Z. In this setting, an AO is simply a function, which assigns a number y to any
N -tuple (x,,x,....xy) of numbers: y=Aggreg(x, X,...., X, ) that satisfies:

*Agg(x) =X,

*Agg(a,a,...,a) = a. In particular, Agg(0,0,...,0) = 0 and Agg(1,1,...,1) =1, or

N

Agg (255,255, ..., 255) = 255,
o MIN(X, Xy0ee, Xy ) S AGY (X, Xy ey Xy ) S MEX(X, Xy vy Xy ).
Here min(x,x,,...x,) and max(x,x,,...x,) are respectively the minimum and the maximum
values among the elements of (x,,x,,....x ).
All other properties may come in addition to this fundamental group. For example, if for eve-
ry permutation voeS, of {12,..,N} the AO satisfies:
Agg(xcr(l)’xa(Z)""‘Xcr(N)):Agg(xl’XZ""‘XN)’

then it is invariant (symmetric) with respect to the permutations of the elements of
(X, %, %y ). In other words, as far as means are concerned, the order of the elements of

(X, %, Xy ) 18 - @and must be - completely irrelevant.
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According to Kolmogorov (1930) a sequence of functions Agg, (x,.X,....x,) (for different N)
defines a regular type of average if the following conditions are satisfied:

1) Agg, (x,%,,...%,) IS continuous and monotone in each variable; to be definite, we assume
that Agg, Is increasing in each variable.

2) Agg,, (%, %,,..., X ) 1S a symmetric function.

3) The average of identical numbers is equal to their common value: Agg, (x,X,...,x) = X..

4) A group of values can be replaced by their own average, without changing the overall av-
erage:

AGYy (X Xa e X s Vi Yareens Yo ) = AQG g (MM ML Y, Y Y ),
where m=Agg,, (X, %,,..., Xy )-
Proposition 1. (Kolmogorov, 1930). If conditions (1)-(4) are satisfied, the average
Agg, (X, %,,...,xy) IS Of the form:
Kolm(K | X, X,,..., xN):K’l{i%K(xi)},
where K is a strictly monotone continuous function in the extended real line.
We list below a few particular cases of means:

1) Arithmetic mean (K(x) = x ): Mean(x, X,, ..., Xy) = %i
i-1

N
2) Geometric mean ( K(x) = log(x) ): Geo(X;, Xy, ..., Xy ) = exp(%Zl x,)
i=1
3) Harmonic mean (K(x)=x"): Harm(x, X,,... Xy) = ﬁ —_NN
1381 1
NZx Zx
i=1 N i=1 N

4) A very notable particular case corresponds to the function K(x) =x". We obtain then a

N
quasi arithmetic (power or Holder) mean of the form: Power, (x,X,,..., XN)=(%ZXiDJp-

This family is particularly interesting, because it generalizes a group of common means,
only by changing the value of p.

A very notable particular cases correspond to the logic functions (min; max; median):
y=Min(X, X,,..., Xy ), ¥ =Max(X,X,,..., Xy ), ¥ =Med(x,X,,..., Xy ).
When filters (1) and (2) are modified as follows:

s, i)= Agg [f(mn)], (16)

(m,n)eM ;)

we get the unique class of nonlinear aggregation filters proposed in the works (Labunets,
2014; Labunets et al., 2014 a,b,c).

In this work, we are going to use the cost function in the form of an aggregation function
“ Agg, [ wp(cx )] = Agg[ wp(c. Xt ) wop (e ), . wyp(cx" )]
instead of

We obtain the next generalization of the Fréchet point and median.
Definition 3. The Fréchet aggregation point and median are the points c,, eR* and
¢ €D ={x'x",..,x"} that minimize the aggregation cost function (ACF) *Agg!,[wp(c.x')].
They are formally defined as
Cyn = FrechPt( ¥ Agg, p| x',... x" ) =arg min (Cf Agg}, [V\Iip(C,Xi )}) (17)
and
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€= FrechMed (“ Agg, p| X',....x" ) =arg min(Cf Agg’, [wip(c, X )J) (18)
ceD

Note that argmin means the argument, for which the AggiN:l[Wip(c,xi )] IS minimized. In
this case, it is the point c,, eR* in (17) or point ¢,, eD={x",x*...x"} in (18) for which the

aggregation of all distances to the x''s is minimum.
When filters (1)--(2) are modified as follows:

opt

86, j) = FrechPt[ “ Agg, p|f(m,n) ], (19)
(m,n)eMg j)
8§, j) = FrechMed| “ Agg,p|f(m,n)] (20)

(m,n)eM;,
it becomes Fréchet aggregation mean and median filters. They are based on an aggregation
operator “Agg and a metric p, which could be changed independently of one another. For

each pair of aggregation operator and metric, we get the unique class of new nonlinear filters.
Example 4. If observation data are real numbers, i.e., x',x*,...x" eR, the distance function is
the city distance P Y)=p(xy) =[x-Y] and ACF is quadratic
“ Aggl, [wi plcx )J =>"" wp?(c.x), then the optimal Fréchet point (17) and median (18) for
grey-level data (numbers) x',x*,..,x" eR to be the ordinary arithmetic mean, and quadratic
median, respectively, i.e.,
Copt = FrechPt(Cf Agg, p, | X' X%, ..., XN):

. . i12 1,2 N 1&
=argcrre1éq(§|c—x|j=Mean(x,x ..... X )=W. X'

Cop = FrechMed (“ Agg, p| X', X’,...,x" ) =arg min (ﬁl]c— X |2j (22)
In this case, filter (19) is optimal maximum likelihood vector filter for Gaussian noise, and fil-
ter (20) is vector median filter associated with Euclidean metric, because
P Y) = pf (%, Y) =[x=y[ ..
Example 5. If observation data are vectors, i.e., x',x*...x" eR“, the distance function is
the city distance p,(x,y) =l x-y|,, and ACF is the Kolmogorov mean

“ gl [w (e )] -k Sk (o))

then Fréchet aggregation point and median for vectors x',x*,..x" eR" to be the following
Kolmogorov-Fréchet aggregations

(21)

N
Copt = FrechPt(K,p1 | X, XN ) =arg min (K‘l |:2WI K(llc—x ||1)D, (23)
€ i=1
Co = FrechMed (K, p, [X',..., xN):argmiDn{K{iWiK(HC—XIIl)D, (24)
ce =

respectively. In this case, filter (19) is the Kolmogorov--Fréchet vector mean filter, and filter
(20) is the Kolmogorov-Fréchet vector median filter associated with sity metric.

In Definitions 1 and 2 we used a distance function p(x,y). But all known metrics have the
aggregation form. By this reason, we can use an aggregation function ”Agg(lc, - x|....[c, — %)
instead of p(|c,~x [,...|cc =X I).

Definition 4. The Fréchet aggregation point and median are the points c,, eR* and

Cp €D={x"x*,..,x"} ~ that minimizes the aggregation cost function (ACF)

opt
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tances w,”Agg(c.x'),w,”Agg(c,x’),... ...w,"Agg c,&) from an arbitrary point ccR* to each
point x',x,...x" e R*). They are formally defined as
Con = FrechPt( ' Agg, “Agg | X' X% ..., X" ) =

=arg min (d Agal [ w, - Agg(cx )})

(25)
and
¢, sFrechMed(“Agg,”Agg|x1,x2 ..... x“):

=arg mln(°f Aggls [ ;- Agg cx )})

We use generalized Fréchet point for constructing new nonlinear filters. When filters (1)
are modified as follows:

(26)

86,j)= FrechPt[‘:f Agg, Agg | f(m,n) |, (27)

(m,n)eM

§6,))= FrechMed[Cf Agg, Agg | f(m,n) ] (28)

(m,n)eM

it becomes Fréchet aggregation mean and median filters. They are based on an arbitrary pair
of aggregation operators “Agg and #Agg(c,x), which could be changed independently of one
another. For each pair of aggregation operators, we get the unique class of new nonlinear fil-
ters.

Example 6. For vector observation data x',x*,..,x" eR*, for L-Kolmogorov aggregation dis-

tance function L‘l(Z::lLO C — X |)) and for ACF in the form of the K -Kolmogorov mean
K’l(ZiN:lwiK["Agg(c, X )]) , we have

Cop = FrechPt(K, LIx, %%, x" ) =arg ggérg (Cf Aggi’il[wi "Agg(c,xi )}) =

=arg min {Kl(ng{Ll[gL(l G — X, I)]D} (29)

Con = FrechMed (K, L|x",x*,...,.x" ) =arg min (Cf Aggl, [wi *Agg(c.X )J) -

=arg mip {Kl[iNleiK{Ll[gLa G X, |)jD} (30)

where L and K are two Kolmogorov functions. In this case, filter (27) is the Kolmogorov--
Fréchet vector mean filter, and filter (28) is the Kolmogorov--Fréchet vector median filter as-
sociated with sity metric and with a pair of Kolmogorov K-, L - functions .

Experiments
Generalized vector aggregation filtering with “ Agg = Mean,Med,Geo has been applied

to noised 256x256 image “Dog” (Figures 3b,4b,5b). We use window with size 3x3. The de-
noised images are shown in Figures 5-7. All filters have very good denoised properties.

Conclusions

A new class of nonlinear generalized MIMO-filters (vector median filters or Fréchet
filters) for multichannel image processing is introduced in this paper. These filters are based
on an arbitrary pair of aggregation operators, which could be changed independently of one
another. For each pair of parameters, we get the unique class of new nonlinear filters. The
main goal of the work is to show that generalized Fréchet aggregation means can be used to
solve problems of image filtering in a natural and effective manner.
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a) Original image b) Noised images, PSNR = 21.83
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¢)“ Agg =Mean, "Agg = p,, d) “ Agg =Med, *Agg=p,,
~ PSNR=3252 PSNR = 31.79,

@

e)“ Agg =Min, Agg = p,, PSNR f) “ Agg=Geo, "Agg = p,,
=28.29 PSNR = 30.52
Fig. 3. Original (a) and noised (b) images; noise: Salt-Pepper;
denoised images (c)-(f).

b) Noised images, PSNR = 17,19

¢) “Agg =Mean, Agg = p,, d) “Agg=Med, "Agg=p,,
PSNR = 21.83 PSNR = 20.84
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e) “ Agg=Min, ?Agg = p,, PSNR f) Agg=Geo, "Agg = p,,
=19.05 PSNR = 20.51

Fig. 4. Original (a) and noised (b) images; noise: Gaussian PDF; de-
noised images (c)-(f).

a) Original image

c) “Agg=Mean, "Agg=p,, d) “Agg=Med, "Agg=p,,
PSNR = 29.61

e) “ Agg=Min, ?Agg = p,, PSNR f) “ Agg=Geo, "Agg = p,,
=27.77 PSNR =30.14
Fig. 5. Original (a) and noised (b) images; noise: Laplasian
PDF; denoised images (c)-(f).

PeneH3eHT cTaTbu: KaHIUMJIAT TEXHUYECKUX HAYK, JOLUEHT WHCTUTyTa SKOHOMHUKH U
yIOpaBJICeHUsT Y PaIbCKOr0 TOCYIapCTBEHHOrO JiecoTexHnueckoro ynusepcurera M.II. Bopo-
HOB.





