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GENERALIZED CLASSICAL AND QUANTUM SIGNAL THEORIES
ON HYPERGROUPS.
PART 2. QUANTUM SIGNAL THEORY

Introduction

Quantum signal theory is a term referring to a collection of ideas and partial results,
loosely held together, assuming that there are deep connections between the worlds of
quantum physics and classical signal/system theory, and that one should try to discover and
develop these connections. The general topic of this part of our program is the following idea.
If some algebraic structures arise together in quantum theory and classical signal/system
theory in the same context, then one should try to make sense of this for more generalized
algebraic structures. Here, the point is not to try to develop alternative theories as substitute
models for quantum physics and signal/system theory, but rather to develop a « S -version»
of a unified scheme of general classical and quantum signal/system theory.

It is known (Creutzburg at al., 1992, 1994) that general building elements of the Classical
and Quantum Signal/System Theories (CI-SST and Qu-SST) are the following:

1) Abelian group of real numbers AR,

2) classical Fourier transform F , and

3) complex field C.

This means that these theories are associated with the triple <<AR,F ,C>> . We can write

C1-SST= £, (<<ARF ,c))), Qu-SST= £, (<<ARF ,c)))
for any correspondences f, and f, , respectively. These correspondences mean that triple
<<AR,F ,C>> determines ordinary theories C1-SST and Qu-SST.

We develop a new unified approach to the Generalized Classical (see Part 1) and Quantum
Signal/System Theories (GCI-SST and GQu-SST). They are based not on the triple

<<AR,F ,C>>, but rather on other Abelian groups and hypergroups, on a large class of
orthogonal, unitary, multiorthounitary multiparametric transforms (instead of the classical

Fourier transform), and involves other fields, rings and algebras (triplet color algebra,
multiplet multicolor algebra, hypercomplex commutative algebras, Clifford algebras). In our
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approach Generalized Classical and Quantum Signal/System Theories are two functions
(correspondences) of a new triple:

GCI-SST = f, (<<HGF ,A))), GQu-SST= £, (<<HGF ,A))),
where HG 1is a hypergroup, F is a unitary transform, and A is an algebra. When the triple
<<HG,F ,A>> is changed the theories GCI-SST and GQu-SST are changed, too. For

example,
. If F 1is the classical Fourier transform, HG is the group of real numbers AR

and A is the complex field C, then <<AR,F ,C>> describes free quantum particle.

. If F is the classical Walsh transform (CWT), HG is an abelian dyadic group
Z), and A is the complex field C, then <<Z§,CWT, A>> describes n -digital quantum
register.

. If F is the classical Vilenkin transform (CVT), HG is an abelian m -adic

group Z" and A is the complex field C, then <<Z';,CWT, C>> describes n -digital

quantum m -adic register.
Different triples generate a wide class of classical and quantum signal theories. Using
multiparametric transforms we construct so-called Multiparametric Generalized Classical
and Quantum Signal Theories

MP-GCI-SST = f, (<<HG,OF[0],A>>), MP-GQu-SST=f, (<<HG,CF[9],A>>).

We develop two topics (Multiparametric Generalized Classical and Quantum Signal/System
Theories) in sequence and show their inter- and cross-relation. We study classical and
quantum generalized convolution hypergroup algebras of classical signals and Hermitian
operators (quantum signals). One of the main purposes of this work is to demonstrate
parallelism between the generalized classical hyperharmonic analysis and the generalized
quantum hyperharmonic analysis.

Basic definitions

Quantum signal theory is a term referring to a collection of ideas and partial results,
loosely held together, suggesting that there are deep connections between the worlds of
quantum physics and classical signal/system theory, and that one should try to discover and
develop these connections.

The basic objects of the quantum signal theory are related not to functions but to Hermitean

operators f F associated with classical signals f and spectra F' by so-called Weyl
quantization rule (Weyl, 1931):
WQ: f > Aw[f]—> f, WQ: F>aW[F]>F.

(There are the Schwinger quantization rule using Wigner-Ville distributions). To obtain
quantum representation of signals and spectra we have first to represent this object classically
by time-frequency distributions Awl[ f](v,7) and aW[F](zr,v) and then quantize those
representations  using  so-called  generalized  quantum  Fourier  transforms
f =QF {Aw[ v, z‘)} and ¥ =QF {aW[F (7, v)}. We see that the generalized Weyl
quantization is a bilinear operator mapping every basic object of the classical signal theory to
basic object of the quantum signal theory. This operator is a composition of the generalized
Woodward-Gabor transform and generalized quantum Fourier transform both associated with
classical generalized Fourier transform CF . The functions Aw[ f](v,7), aW[F](z,v) (or
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wV[ f1(x,®), WV[F](®,x)) are called the symbols (a symbol is not a kernel) of the quantum
signal f and the quantum spectra F, respectively, and are denoted as
AW fl(v,7) = sym{ f }, and aW[F](z,v) = sym{l:“ } Vice versa, a quantum signal f’ and
quantum spectra F are called the operators associated with a classical signal f and
classical spectrum by symbols Aw[ /] and aW[F'], respectively, and they are denoted as
f= Op{Aw[f]}, and F = Op{aW[F]}.
Quantization rules
Classical Weyl quantization. In 1931 H. Weyl proposed to modify the classical ordi-

nary Fourier transform formula by changing its complex-valued harmonics into an operator-
valued harmonics. He used the following operator-valued harmonics:

{E")[v,r] — ei(vﬁfflx+7®,\-) _ eivr/zeivyﬁzx eir(f)x} (1)

associated with classical ordinary Fourier transform, where multiplication 9, and

differential ©, operators are given by 9 f(x)=xf(x), D f(x):= —dfd—ix). Using these
operator-valued harmonics, H. Weyl wrote any quantum signal f as
F=QF fawl/l= [ [ Awl/10e™ P dpwdn), @)
where e
AW 10, 0)=QF {7} = sym(F} =T | e T2 . ()

Transformations (2) and (3) are called the direct and inverse quantum ordinary
Fourier transforms.

It is well known that for classical shift we have ff f (x) =f (x+r)=e’®* f(x). This

expression represents the decomposition of ordinary finite shift into a series of powers of

differential operator = and is called the infinitesimal representation of translation shift.
X

LAy v A d
Analogously, we can obtain D!F(®)=F(w+v)=e"F(w), where O, = e Hence,
@
7:; =™ 15; = ¢"” . For this reason, we can write operator-valued harmonics (in “time” and
“frequency” domains) in the following forms
QFX _ ei[vﬂl/l,v+r®x] _ eivr/ZM;/f;r and QFw —e
We shall use these expressions for design of generalized quantum Fourier transforms,
associated with generalized classical Fourier transforms (including MPTs).
Generalized Weyl quantization. Let us construct generalized operator-valued hyper-
harmonics associated with a basis {gow (x)} . This basic can be a multiparametric basis

i[Tj/[a)+V®w:| — eiVT/ZMTbV ) (4)

w w

*
[21=9)

{(pa) (x)}wed = {(pw (x|t9)} o and can generates a multiparameter classical Fourier transform

CF =CF [49] All generalized shift operators associated with CF [6’] have the following in-

finitesimal representation:

T\(01=0, z10), D.l6]=g,(D00).
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and are called the operator-valued hyperharmonics associated with a manyparameter
orthogonal basis {qow (x | «9)}%9* , where

D:[0lp, (x10)=0p,(x]0), D.[0)p, (x]0)=xp,(x]0).
Using operator-valued hyperharmonics we can construct generalized Heisenberg-Weyl

operators (according to (1)) and quantum hyperharmonic analysis of quantum signals and
spectra. Symmetric Heisenberg-Weyl operators we define as:

EEV’T][Q] oz 9)M [61T.[6] = 0" (r|0)p, (ﬂl/lx ‘ 0)(p (r160), veQ',reQ, (5)

Ea) [9] o) (r |9)Ma)[0]Da)[9] (pl/z(r|¢9)§o (r|l9)gow(@v|¢9), veQ',7eQ. (6)

These operators satisfy the following composmon laws and the «commutationy relations:

v+, 47

Pl el
Ec [01'E: [01=0,(z"|0)-¢,*(z]0)- E. (6],

[v.7] [vie] . 8 [v.e]
E: [0] E: [6?]=¢V”2(r |¢9)~¢V1,/2(r|t9)-Ex [49]~Ex [4],
and

[c+7v+v']

[r,v] [r',v'] _
Eo [01-Eo [0]1=3,"(z"|0) ¢, (z |t9) Ew [6],

[T,V] [‘r',v‘] _ [z‘,v]
E, [01Ee [0]1=0.(c'|0)p. (r]6)- B [(9]-Ew [4].
They form two Heisenberg-Weyl hypergroups associated with the generalized classical
Fourier transform CF . It is easy to check that

Tr {EE.””[e] - (EE.V""][Q]” —3(v—v)8(r 1, (7)

T{ o1 (Ew [e]” S(v—v)(r—1'). (8)

For this reason, for each value of parameter & we can construct any quantum signal f/[8] and

quantum spectrum F[@], that can be written as follows:

101=QF [0){Aw([ 18]} = Op, {Aw[£16] = [ [ Awlf|61v,7)-E 7 [6]-dn0v)d ue),

veQ' 7eQ
)

FIO)=QF [0){aW[F|0]} =0p, {aW[F 6]} = | [ aWIF|0)ew)E"10)-d p(eyduv).

7eQyeq’
(10)
Using (7) and (8), one can invert (9) and (10) as follows:

AWL/ | 0)(v, ) =QF (01 /101} = Sym, { /10)} = Tr 101 (EEV”wﬂ ,
i (an
aW[F | 0](v,7) =QF;[9]{F[9]} = Sym, {F[e]} - Tr{F[@] : (EZ”[@])+ . (12)

Transformations (9-10) and (11-12) are called the generalized direct and inverse
manyparameter quantum Fourier transforms associated with the multiparameter classical

Fourier transform CF =CF [6’]
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Quantum Fourier transform associated with classical DFT on the cyclic group Z

Quantum DFT on the cyclic group Z . As example, we investigate quantum dis-
crete Fourier transform (DFT), associated with the classical DFT on a cyclic group Z . Let
Q=Q =7Z, be the finite cyclic group, where p is a prime integer. We use common formula

E[v,r] =eivr/2 M, itD,

ivr/2 v 4
- e e =" M- Ts.

For this reason, the map

f=QF (Aw[fli=0p{aw[/]j= 3 X Aw[f](v.e)e" M. T =

veZ/ptel/p

1 1" [o 1 1
L g 0 1
- Y Y AW e
veZ/preZlp . 0
i e ] | 0]
(13)
is the quantum DFT associated on the cyclic group Z ,, where
1 ] 0 1 ]
g 0 1
M, = g’ , Tx= '
0 1
i g’ 1 0

Heisenberg-Weyl groups over ring Z . Let us consider Heisenberg-Weyl group with ele-

ments of finite commutative ring over Z

I o ¢
HW =HW(Z,.Z,.Z,)=1g(t.o.c)=| 1 t|teoceZ,
1

Consisting of upper triangular (3><3)-matrices g(t,a),c) with the following multiplication
rule: g(tl,a)l,cl)-g(tz,a)z,cz)= g(t1 +t,,0, +w,,c, +c, +t1a)2). Every element g(t,a),c)

has the unique representation of the following form: g(t, , c) -7'0°C , where

1 1 1
C =g(0,0,c)=| 1 |, T =g(t,0,0)=| 1 t|,Q"=g(0,0,0)=| 1

1 1 1

(6]

It is known that group HW (Z L, L p) has p® 1-D irreducible representations and p—1
p-D of
fF (t, a),c) :HW (Z L, L p) — C , defined on the Heisenberg group and with values in the

representations. Fourier transform an arbitrary signal

complex field C, has the following form:
e for scalar -valued spectra ( p> 1-D irreducible representations):
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f1><1 al’az z ZZf INOX C a]t azw (14)
e for matrix-valued spectra (p—1 p-D representatlons).
1 1““To 1 T
&' 0 1
po zzzf t a)c £," g’ ) (15)
t,w,c € .. ) O 1
i g IR 0]

where £, ={’/I, a,=1,2,..,p-1.

(px p) — matrices
. (" |, L] LI I L]

(1x1) —matrices | . |[.|. |. A U I
01 _p-J :

o

e
L =0,...,p—1 a,=1,...,p—1

Fig. 1. Matrix-valued spectrum.

Hence, an arbitrary signal fF(7,w,c) defined on the Heisenberg group and with
values in the complex field C has p* scalar-valued and p—1 ( p X p)-matrix-valued spectral
components (see Fig. 1). With quantum mechanics point of view, Exp. (15) represents p —1
different quantum Fourier transforms (for everya, =1,2,...,p—1). The family of all 1D
representations (14) corresponds to the classical mechanics ((051 ,az)-plane) and various
representations (15) (where o, =1,2,..., p—1) lead to different quantum signals:

f1 :FPXP(I)a fz :FPXP( ) f3 Fpo( ) fp_l :Fpo(p_1)~
These quantum words correspond to different quantum descriptions with different Planck’s
constant = q; .

Classical realization of quantum Fourier transform. We construct transform matrix
QF_ for the quantum DFT (14-15) in the following way: the matrix rows will be enumerated

with
:(al,az,api,k):{

where a,a,€Z,,f, (a)=[fi(@)] ., The column with the number n=17+p+p’

a,p+a, for 0<m<p’—1,
pla,+ip+k, for p’<m<p’-1,

corresponds to the element 7 o’ c’ , t,oo,c=0,,...,p—1. Then

QF, :[1p3—p2 ®([P®FP)][FP®FP®]P]: (16)
:[ng_pz ®U,QF )|lI,®F , Q1 J[F,®I,&1,]

where F,®F, is the 2-D transform (14) and (F,®1,) is p-D transform (15). The

expression (16) is called the fast quantum DFT in the form of classical Fourier-Heisenberg-

70



3KO-TIOTEHLIMAJI Ne 3 (15), 2016

Weyl transform. It represents a classical realization p—1 quantum transformations (for
different Planck constants 7 = ;).

Generalized quantum convolutions

Let f161=QF, [9]{Aw[fw]}, glo1=QF [0]{Aw[g 0]} and
F[0]=QF [0]{aW[F | 6]}, G[6]=QF ,[6]{aW[G|6]} be two quantum signals and two
quantum spectra. For the products f[0]-g[@] and F[0]-G[#] we have, respectively,

f16}2l01=QF [01{Aw[ /| 0]1 Aw[g 0]},

F[01-G[H] =QFw[«9]{aW[F(a)] 9)]gaW[G(a)] 49)]} ,
where the expressions

(Aw[fwz[Aw g|6’)
(

IAW f|0](a)$vx T)Aw[g|6?](vz' 0" r)_l/z( ) (v)d,u(r), (17)

(aw [F|0]#aW] G|9)(

= [ aW[F](x f,a)%v)aW[G]( V)3 (1) 3" (x)dpe(v) d (o)

(v7)
(18)
are called the multiparameter generalized classical twisted signal and spectral convolutions.

Conclusion

In this work we developed mathematical and algorithmically software interfaces
between classical and quantum signal/image processing devices and systems, using for this
goal a new generalized Weyl’s quantization procedure in the form of generalized quantum
Fourier transform. This interface can have classical and quantum realizations. Classical
realization (on classical computer) of quantum Fourier transform gives classical realization of
this interface.
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