УДК 630*228

А.А.Кулагин

(Институт биологии Уфимского научного центра УрО РАН)

ДЕЙСТВИЕ СУБЛЕТАЛЬНЫХ КОНЦЕНТРАЦИЙ ИОНОВ МЕТАЛЛОВ НА АССИМИЛЯЦИОННЫЙ АППАРАТ *POPULUS BALSAMIFERA* L. (ВЕГЕТАЦИОННЫЙ ОПЫТ)

Исследования проводились на растениях тополя бальзамического (Populus balsamifera L.), растения выращены из древесных черенков, заготовленных в культурах 1960-х годов посадки, произрастающих вдали от источников загрязнения. Пол деревьев не определялся. Длина черенков - 25 ± 0.5 см, их диаметр – 4.5 ± 1 мм, количество живых почек 7-8 шт. (Комиссаров, 1964; Плотникова, Хромова, 1981; Мак-Милан Броуз, 1987).

Черенки выращивали в вегетационных сосудах с песком в течение 60 суток. После формирования листьев и корневой системы растения были обработаны 1%-ными растворами ацетатов K, Na, Ca, Ba, Mg, Mn, Zn и 0.2%-ными растворами ацетатов Си и Рв. Данные концентрации являются для многих древесно-кустарниковых растений сублетальными, а различия в концентрациях солей обусловлены неодинаковой фитотоксичностью металлов - медь и свинец являются наиболее токсичными из металлов по отношению к растениям (Махонина, 1987; Загрязнение..., 1988; Физиология ..., 1989; Рыбальский и др., 1989а; 1989б; Устойчивость..., 1991). Следует отметить, что ацетат-ионы являются наименее токсичными для растений по сравнению с другими анионами (Кулешова, 1965; Царева, 1988; Кагарманов, 1995) и не оказывают значительного влияния на развитие растений. Таким образом, токсический эффект, наблюдаемый при действии солей металлов на растения, вызывается по большей части ионом металла. Соли растворяли в дистиллированной воде (все соли являются водорастворимыми) и путем полива обрабатывали растения, произрастающие в вегетационных сосудах, по 0,5 л в каждый сосуд. Растворами каждой из девяти солей поливали 20 растений в 10 вегетационных сосудах. Обработка растений растворами солей металлов осуществлялась однократно. Далее по ходу эксперимента растения поливали дистиллированной водой по мере необходимости. В качестве контрольных были использованы растения, поливаемые дистиллированной водой на протяжении всего эксперимента.

По прошествии 30 суток эксперимента листья опытных и контрольных растений отбеливали в хлорсодержащем отбеливающем растворе «Белизна» (1 часть раствора: 2 части воды) в течение 13-15 часов, а затем готовили временные препараты и микроскопировали для определения длины жилок и количество устьиц на листьях. Длину жилок на единице поверх-

ности определяли в различных частях листа (апикальной, серединной и базальной) с последующим усреднением. Для измерения длины жилок и подсчета количества устьиц на листьях использовался микроскоп Amplival (Carl Zeiss Jena, Germany). В тексте представлены данные анатомоморфологических показателей в следующих величинах: длина жилок – в миллиметрах на квадратный миллиметр (мм/мм²), количество устьиц – штук на квадратный миллиметр (шт/мм²).

В конце эксперимента, т.е. на 30-е сутки, определяли уровень дыхания листьев по методу Варбурга с использованием аппарата Варбурга (WARBURG-APPARAT VEB GLASWERKE STUTZERBACH, GDR). Пигменты в листьях определяли по методу Wintermans. Содержание пигментов определяли на спектрофотометре SPECOL 21 (Poland) (Баславская, Трубецкова, 1964).

Все измерения проводили не менее чем в 10 повторностях. Статистическую обработку полученных данных проводили с использованием программного пакета Microsoft Excel 2000. В таблицах и на рисунках представлены средние значения.

В результате проведенных исследований установлено, что резкое увеличение содержания металлов в растительном субстрате оказывает неодинаковое влияние на растения тополя бальзамического, выражающееся в изменении анатомических и физиологических параметров растений. В таблицах и на рисунках представлены данные об изменениях значений жилкования, количества устьиц, содержания пигментов и дыхания листьев тополя бальзамического после обработки растений растворами солей различных металлов.

Установлено, что при действии Zn²⁺, Ba²⁺ и Cu²⁺ общая длина жилок на листьях увеличивается, что может свидетельствовать об увеличении скорости обменных процессов между листьями и многолетними частями растений (табл. 1). Такое увеличение, по-видимому, способствует снижению активности и компартментации токсичных ингредиентов растительного субстрата в листьях растений с последующим их удалением путем отмирания и опадания.

Под влиянием ионов K⁺, Na⁺, Ca²⁺, Mn²⁺, Mg²⁺ и Pb²⁺ отмечается снижение общей длины жилок на листьях по сравнению с контрольным значением (см.табл. 1). Эффект снижения общей длины жилок может быть объяснен тем, что избыточное содержание ионов в субстрате способствует подавлению работы ассимиляционного аппарата растений. Однако известно, что в условиях загрязнения окружающей среды листопадные деревья могут сбрасывать листву с накопленными в ней токсикантами в середине вегетационного периода, сохраняя при этом способность к повторному облиствлению.

Таблица 1. Изменения жилкования листьев тополя бальзамического (Populus balsamifera L.) при однократном действии сублетальных концентраций ионов металлов

Металл	Длина жилок, мм/мм ²				
	Верхняя часть листа	Средняя часть листа	Нижняя часть листа	Среднее значение	
Контроль	0,82	0,86	0,87	0,85	
K	0,71	0,71	0,70	0,71	
Na	0,80	0,79	0,69	0,76	
Ca	0,73	0,69	0,72	0,71	
Ba	0,98	0,91	0,93	0,94	
Mg	0,82	0,80	0,79	0,80	
Mn	0,66	0,65	0,60	0,63	
Cu	0,88	0,87	0,93	0,89	
Zn	1,13	1,14	1,13	1,13	
Pb	0,75	0,75	0,70	0,73	

Обмен веществом между растениями и окружающей средой, транспирация и поглощение углекислоты происходит благодаря работе устьичного аппарата. Таким образом, количество устьиц на единицу площади листа несомненно играет важную роль в регуляции физиологических процессов и является основой устойчивости и адаптационного потенциала растений. Установлено, что при развитии растений в условиях загрязнения окружающей среды ионами металлов происходят изменения содержания относительного количества устьиц на листьях (рис. 1).

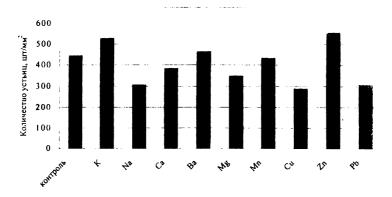


Рис. 1. Изменения относительного количества устьиц (шт/мм²) на листьях тополя бальзамического (*Populus balsamifera* L.) при действии на растения сублетальных концентраций различных металлов

Показано, что при действии Zn^{2+} , K^+ и Ba^{2+} происходит увеличение, а при действии Cu^{2+} , Na^+ , Pb^{2+} , Mg^{2+} , Ca^{2+} и Mn^{2+} - снижение относительного количества устьиц на единицу поверхности листа. Факты изменения относительного количества устьиц могут быть объяснены тем, что одним из главных проявлений фитотоксичности металлов является торможение роста листьев, что, в свою очередь, приводит к явлению мелколистности. Таким образом, ионы металлов, в результате действия которых относительное количество устьиц на листьях опытных растений уменьшается по отношению к контрольному значению, оказывают стимулирующее воздействие на рост листьев. И, напротив, увеличение относительного количества устьиц на единицу поверхности листа говорит об угнетении роста листьев, т.е. о степени токсичности металла.

Известно, что изменениям на анатомическом уровне предшествуют изменения на молекулярном и физиолого-биохимическом уровнях (Шмальгаузен, 1983). Так, были установлены изменения содержания основных пигментов фотосинтеза и дыхания листьев опытных растений тополя бальзамического по сравнению с контролем (табл. 2, рис. 2).

Показано, что ионы металлов в различной степени обусловливают изменения содержания основных пигментов фотосинтеза. Так, при действии Рb, Сa, Мn, К и Na происходит снижение, а при действии Ва и Mg увеличение содержания хлорофилла а в листьях опытных растений. Увеличение количества хлорофилла отмечалось в листьях растений, обработанных солями Ba, Pb, Zn, Mn, Na и Cu, уменьшение — после обработки черенков солями Mg, К и Ca. Содержание пигментов, относящихся к группе каротиноидов изменяется следующим образом: их увеличение по сравнению с контролем происходит при действии Ba, Pb, Zn, Na, Mg и K, а уменьшение — при действии Mn, Cu и Ca. Суммарное содержание пигментов в листьях опытных растений было ниже относительно контрольного значения в случае с Ca, Pb, Mn, K, Cu и выше — в случае с Ba, Zn, Na и Mg.

Таким образом, было установлено, что при действии металлов на растении присходит перераспределение долей пигментов фотосинтеза в листьях растений. В основном отмечается явление уменьшения содержания в листьях основного пигмента фотосинтеза — хлорофилла а при параллельном увеличении доли хлорофилла b или каротиноидов. Как известно, хлорофилл b и каротиноиды играют роль вспомогательных пигментов, а также выполняют защитные функции. Увеличение доли вспомогательных пигментов при одновременном снижении количества основного пигмента может расцениваться как адаптивно-компенсационная реакция ассимиляционного аппарата и растения в целом на солевой стресс.

Таблица 2. Содержание пигментов в листьях тополя бальзамического (Populus balsamifera L.) при однократном действии сублетальных концентраций ионов металлов

		традии полов			
	Содержание пигментов в листьях, мг/г сырой массы				
Металл	Хлорофилл <i>а</i>	Хлорофилл <i>b</i>	Каротиноиды	Сумма пигмен- тов	
Контроль	1,9829	0,3591	0,5962	2,9382	
K	1,6733	0,2611	0,6715	2,6059	
Na	1,8864	0,5164	0,7394	3,1422	
Ca	1,2358	0,2437	0,5517	2,0312	
Ba	2,5611	1,0362	0,8306	4,4279	
Mg	2,1648	0,0648	0,7138	2,9434	
Mn	1,4599	0,5519	0,3870	2,3988	
Cu	1,9840	0,4626	0,4481	2,8947	
Zn	1,9834	0,6194	0,7927	3,3955	
Pb	0,5981	0,7643	0,8192	2,1816	

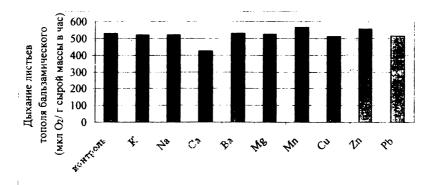


Рис. 2. Изменения дыхания (мкл O_2 /г сырой массы в час) листьев тополя бальзамического (*Populus balsamifera* L.) при действии на растения сублетальных концентраций различных металлов

Анализ данных, представленных на рис. 2, позволяет сделать заключение о том, что лишь при действии избытка ${\rm Ca}^{2^+}$ на растения тополя бальзамического отмечается подавление дыхания листьев. Кальций относится к числу макроэлементов, необходимых для жизни растений. Видимо, избыточное содержание ионов кальция в растительном субстрате нарушило естественный метаболизм данного элемента, что отразилось на одном из центральных энергетических процессов растений — дыхании листьев.

Таким образом, резкое увеличение содержания отдельных компонентов в окружающей среде и особенно в растительном субстрате обусловливает солевой стресс растений. По законам осмоса ионы устремляются

внутрь растительного организма. Для выживания в условиях засоления растения затрачивают значительное количество энергии и запасных веществ на работу по поддержанию осмотического баланса.

Результатом настоящих исследований явилось установление фактов наличия изменений на молекулярно-физиологическом и анатомоморфологическом уровнях тканей листа под действием металлов. Установлено, что при действии металлов происходят количественные изменения соотношения пигментов фотосинтеза в листьях растений. Так, отмечено увеличение доли хлорофилла b (Ba, Pb, Zn, Mn, Na, Cu) и каротиноидов (Ba, Pb, Zn, Na, Mg, K) по отношению к хлорофиллу a в листьях опытных растений по сравнению с контрольными образцами. Достоверные изменения дыхания листьев — одного из важнейших физиологических и энергетических процессов растения — наблюдалось только при действии Ca^{2^+} . Ионы других металлов не оказывают значительного влияния на изменение дыхания листьев опытных растений тополя бальзамического по сравнению с контролем.

Развитие ассимиляционных органов, как и всего растения в целом, лимитируется концентрацией элементов минерального питания в окружающей среде. Показано, что в случае с цинком и барием происходит увеличение количества устьиц и жилкования листьев. Этот факт свидетельствует об увеличении скорости обменных процессов в листьях при одновременном замедлении роста ассимиляционных органов. При избытке ионов меди в растительном субстрате наблюдается параллельное увеличение жилкования и снижение количества устьиц на листьях, что также свидетельствует об увеличении скорости обменных и о замедлении ростовых процессов листьев. При действии К⁺ наблюдается обратный эффект — увеличение количества устьиц при уменьшении жилкования. Влияние ионов Na⁺, Ca²⁺, Mn²⁺, Pb²⁺, Mg²⁺ на растения тополя бальзамического выражается в уменьшении количества устьиц и жилок на листьях опытных растений относительно контрольных.

В условиях засоления адаптационные механизмы растения направлены на поддержание ионного баланса в организме. В результате наиболее значительных изменений состояния окружающей среды, каковым является засоление, в растениях происходят изменения не только на молекулярном, но и на более высоких уровнях организации, что свидетельствует о его серьезном экологическом значении. Изменения, происходящие в ассимиляционных органах растений, несомненно, носят адаптивный характер и являются необходимыми для выживания растений в условиях избыточного содержания металлов в окружающей среде.

Библиографический список

Баславская С.С., Трубецкова О.М. Практикум по физиологии растений. М., 1964. С. 105-125.

Загрязнение воздуха и жизнь растений./ Под ред. М. Трешоу. Л., 1988. 527 с.

Кагарманов И.Р. Биологические особенности тополей в связи с лесовосстановлением в техногенных условиях Предуралья: Автореф. дис... канд. с.-х. наук. Уфа, 1995. 16 с.

Комиссаров Д.А. Биологические основы размножения древесных растений черенками. М., 1964. 273 с.

Кулешова Т.Н. Изучение солеустойчивости сеянцев тополя белого // Лесоводство и агролесомелиорация. Вып. 4. Киев, 1965. С. 256-260.

Мак-Милан Броуз Ф. Размножение растений: Пер. с англ. М., 1987. 190 с.

Махонина Г.И. Химический состав растений на промышленных отвалах Урала. Свердловск, 1987. 168 с.

Плотникова Л.С., Хромова Т.В. Размножение древесных растений черенками. М., 1981. 56 с.

Рыбальский Н.Г. и др. Экологические аспекты экспертизы изобретений. Ч.1. М., 1989а. С. 205-225.

Рыбальский Н.Г. и др.. Экологические аспекты экспертизы изобретений: Справочник эксперта и изобретателя. Ч.2. М., 1989б. С.31.

Устойчивость к тяжелым металлам дикорастущих видов/ Под ред. Н.В. Алексеевой-Поповой. Л., 1991. 189 с.

Физиология растительных организмов и роль металлов / Под ред. Н.М. Чернавской. М., 1989. 150 с.

Царева Р.П. Биоэлектрическая реакция тополя на солевой стресс// Достижения лесн. генет. и селекции - науч.-техн. прогрессу. Воронеж, 1988. С.78-84.

Шмальгаузен И.И. Пути и закономерности эволюционного процесса. М., 1983. 360 с.