УДК630.18.

Н.М. Шебалова, Т.Ф. Коковкина (Уральский государственный лесотехнический университет)

ВЛИЯНИЕ ФТОР- И СЕРОСОДЕРЖАЩИХ АЭРОПОЛЛЮТАНТОВ НА КАЧЕСТВО ПЫЛЬЦЫ СОСНЫ ОБЫКНОВЕННОЙ

Установлено, что под влиянием эмиссий у деревьев изменяется качество пыльцы. Наиболее полноценна и конкурентоспособна пыльца древостоя, произрастающего в фоновых насаждениях. Сравнение насаждений из зон загрязнения выявило более высокую жизнеспособность пыльцы древостоя, произрастающего в зоне сильного загрязнения фторсодержащими поллютантами.

Развитие лесных экосистем лимитируется многими отрицательными факторами как естественного, так и антропогенного происхождения. Состояние сосновых насаждений, подверженных воздействию аэрополлютантов, оценивают, главным образом, по признакам нарушения вегетативных органов, генеративные же признаки в нарушенных лесных экосистемах изучены слабо (Лесные экосистемы..., 1990; Любашевский и др., 1996; Петункина и др., 1997). В то же время генеративная сфера растений чрезвычайно уязвима, и в ее развитии возникает ряд аномалий, приводящих, как правило, к стерильности как женского, так и мужского гаметофита. Наиболее сильное влияние стресса испытывают мужские генеративные структуры сосны, что проявляется в аномальном развитии и низком качестве пыльцы (Негруцкая, 1983; Шевченко, 1983; Wolter, Wariens, 1987).

В настоящее время очень актуальна проблема лесовосстановления в зонах техногенного загрязнения. Поскольку сосна обыкновенная является наиболее распространенной породой Среднего Урала и размножается только половым путем, то необходимо проведение исследований качественной характеристики ее пыльцы. Исследования проводили в сосновых насаждениях зон сильного загрязнения фторсодержащими соединениями Полевского криолитового завода (ПКЗ), сернистыми соединениями и тяжелыми металлами Первоуральско-Ревдинского промышленного узла (ПРПУ). В качестве контроля были взяты сосновые насаждения Сысерти. Сбор микростробилов сосны обыкновенной проводили с индивидуальных деревьев с южной стороны на постоянных пробах 40-летних культур сосны. Пыльца была собрана в период растрескивания микроспорангиев. Прорастание пыльцевых зерен осуществляли в чашках Петри в термостате при температуре 25°C. Выращивание проводили в течение 4 сут. Через определенные промежутки времени производили подсчет набухших и проросших пыльцевых зерен и измеряли длину пыльцевой трубки. Гистохимические исследования пыльцы сосны обыкновенной проводили по стандартным методикам. Содержание запасных веществ (крахмала) и свободных аминокислот в пыльцевых зернах сосны оценивали в процентах по интенсивности окрашивания (сильно окрашенные, слабо окрашенные и неокрашенные) на микроскопе "PZO" (Польша) при увеличении 200х или 400х в девяти полях зрения.

Показателем полноценности и конкурентоспособности пыльцы, ее способности использовать внутренние резервные питательные и энергетические вещества, необходимые при прорастании пыльцевой трубки является жизнеспособность пыльцевой трубки и ее длина.

В таблице представлена часть полученных нами результатов. Выращивание осуществлялось на среде «голодный агар» (2%-ный раствор агара в дистиллированной воде). При этом пыльцевые зерна прорастают только за счет своих запасных веществ, поскольку пыльца сосны богата минеральными элементами; найдены также аминокислоты, белки, в том числе ферменты (более 20), индольные соединения, пигменты, БАВ, органические кислоты, стиролы, ДНК, РНК.

Проведенные исследования показали, что наиболее показательными признаками для выявления различий в состоянии мужской генеративной сферы в экстремальных условиях являются снижение ее жизнеспособности и длина пыльцевой трубки. Жизнеспособность пыльцы сосны обыкновенной, произрастающей в разных зонах, зависит как от индивидуальной изменчивости древостоя, так и от места его произрастания.

Следует отметить, что энергия пыльцевых зерен сосны обыкновенной, произрастающей в районе сильного загрязнения фторидами, значительно отличается от таковой в зоне ПРПУ. Пыльца сосны в зоне действия ПКЗ прорастает значительно быстрее. Уже в течение первых суток количество проросших пыльцевых зерен достигает 27–56 % от общего количества. Увеличение количества проросших пыльцевых зерен продолжается и на вторые сутки, затем процесс замедляется и на третьи сутки набухшие пыльцевые зерна переходят в следующую фазу.

В исследуемых популяциях ПРПУ прорастание пыльцы идет медленнее, с опозданием на 0,5-1 сут. В итоге количество проросших в течение первых суток пыльцевых зерен значительно ниже. Так, в зоне действия ПРПУ пыльцевые зерна у многих деревьев в течение 24 ч только набухли, у части древостоя проросли на 6,7 - 15,6 %. И лишь у 0,6 % деревьев количество проросших пыльцевых зерен в первые сутки достигает 24,1-27,6 %.

Наблюдаются различия и в длине пыльцевой трубки. В зоне сильного загрязнения ПКЗ длина пыльцевой трубки проросших в первые сутки пыльцевых зерен достигает 250-300 мкм, тогда как в других исследованных зонах всего лишь 100-150 мкм.

Влияние загрязнения на длину пыльцевой трубки, наличие крахмала и аминокислот

OTE	He	окра-	шен	=	23,8												
Аминокислоты	Слабо	окра-	шен	10	64,5												
Амі	Сильно	окра-	шен	6	11,7												
	Не ок-	рашен		∞	15,5												
Крахмал	Слабо Не ок- Сильно Слабо	окрашен рашен		7	72,9												
	Сильно	окра-	шен	9	6,11												
% or	оощего копие-	CTBS	Ciba	5	2,4	4,9	10,1	10,7	7,2	7,3	11,5	, x	y, 4	t, 4	, t, c,	3,9	78,3
Длина пыль-	через 3 сут копиче-	WKW	MINIM	4	$150,0 \pm 12,9$	300,0 ± 26,7	$400,0 \pm 33,3$	500,0 ± 50,6	600,0 ± 53,3	$650,0 \pm 54,0$	$700,0 \pm 61,3$	750,0 ± 68,4	$800,0 \pm 63.2$	850,0 ± 63,8	900,0 ± 83,3	$1000,0 \pm 94,5$	
TO %	количе-	СТВЯ		3	4,1	4,6	3,3										12,0
Характери- Длина пыль-	цевой груоки	MKM		2	50,0 ± 5,5	$100,0 \pm 10,9$	$150,0 \pm 14,7$										
Характери-	микростро-	- 2		-			Услов-	ный кон-	троль					-			

блицы	40,4						92,8				10,3									
Продолжение таблицы 9 10 11	44,5						5,7				15,1					-	-			
Продол 9	15,1						1,5				74,6									
∞	54,8						89,3				16,2									
7	35,9						8,5				74,1									
9	9,3						2,2				2,6									
5	3,7	5,4 6,7	9,3	4,3	0,6	3,8 35,2	6,3	9'9	9,1	22,0	11,3	12,6	10,1	9,7	10,2	10,3	۲,۷	0,1	7,0	93,5
4	50,0 ± 3,4	$100,0 \pm 8,9$ 150.0 ± 14.1	200,0 ± 17,2	$350,0 \pm 32,2$	$400,0 \pm 41,5$	450,0 ± 42,9	$150,0 \pm 11,3$	$200,0 \pm 12,7$	$250,0 \pm 13,$		$220,0 \pm 21,3$	$250,0 \pm 19,7$	$300,0 \pm 23,3$	$350,0 \pm 32,6$	$400,0 \pm 31,7$	$450,0 \pm 39,9$	$480,0 \pm 43.0$	$500,0 \pm 43,8$	$600,0 \pm 51,0$	$750,0 \pm 64,5$
3							•				12,1	9,6	14,3	11,3	6,1					53,4
2	Не проросли							Не проросли			50,0±4,7	100,0 ± 9,9	$150,0 \pm 12,7$	200,0 ± 19,8	250,0 ± 21,3					
1	10% IIP.	фектных	пыльце-	вых зерен			ПРПУ				j	IK3	Очень	крупные						

Z T	11	51,6				_		81,7						
Tach		5						∞						_
ONORTHARD INDING	10	34,6						14,7						
CAC	6	13,8						3,6						
	∞	81,7						51,6						
	7	14,7						34,6						
	9	3,6						13,8						
	\$	15,8	11,6	10,1	6,7	44,2		9,2	9,4	6,1	5,8	21,7		
	4	150,0 ± 17,3	$200,0 \pm 18,7$	$300,0 \pm 26,7$	350.0 ± 23.6			$120,0 \pm 10,4$	150,0 ± 12,9	180.0 ± 11.1	200,0 ± 20,5			
	3	14,1	10,6	10,3	3,1	38,1		6,4	4,2			9'01		
	2	50,0 ± 3,7	$100,0 \pm 12,9$	150,0 ± 14,7	250.0 ± 25.3			50,0 ± 3,2	80,0 ±11,2					
	1	ПКЗ	50% pa3-	рушен-	HPCX	пыльце-	вых зерен	ПКЗ	Круп-	ные,70%	разру-	шенных	пыльце-	BLIY 2000U

По мере увеличения продолжительности периода проращивания пыльцы возрастает не только количество проросших пыльцевых зерен, а также длина пыльцевой трубки и ее разнообразие. Так, в зоне сильного загрязнения ПКЗ количество проросших пыльцевых зерен возрастает до 34,3 - 93,5 %, а длина пыльцевой трубки - до 50-850 мкм. В зоне действия ПРПУ количество проросшей пыльцы колеблется в пределах 5,7-68,4 %. Разброс данных очень большой, но прослеживается определенная закономерность: фториды оказывают стимулирующее воздействие на обменные процессы в живой клетке, которые способствуют прорастанию пыльцевых зерен.

Проведенные гистохимические исследования содержания запасных веществ в пыльце сосны обыкновенной, произрастающей в разных зонах загрязнения, показали значительные различия в накоплении крахмала и аминокислот в пыльцевых зернах

Из данных таблицы следует, что длина пыльцевой трубки находится в определенной зависимости от уровня накопления крахмала и аминокислот. Гистохимические исследования распределения пыльцевых зерен по интенсивности окрашивания реактивом Люголя показали, что наибольшее количество крахмала в них накапливается на условном контроле.

Длина пыльцевой трубки значительно выше, если пыльцевые зерна имеют высокое и среднее содержание как крахмала, так и аминокислот. Например, в зоне действия ПКЗ наибольшая длина пыльцевой трубки достигается при содержании крахмала в пыльцевых зернах от 80,2 до 85,3 %, аминокислот от 85,6 до 90,1 %. В зоне сильного загрязнения ПРПУ эти показатели несколько ниже и составляют соответственно 42-46% и 56,6-59,6 %. Пыльцевые зерна древостоя, произрастающего на условном контроле, при содержании крахмала от 82,7 до 85,8 % и аминокислот 90,2-95,9 % прорастают до 890-1000 мкм. И наоборот, наименьшая длина пыльцевой трубки соответствует минимальному содержанию перечисленных выше веществ.

Установлено, что под влиянием эмиссий у большинства деревьев изменяется качество пыльцы. Наиболее полноценна и конкурентоспособна пыльца древостоя, произрастающего в фоновых насаждениях. Сравнение насаждений из зон загрязнения выявило более высокую жизнеспособность пыльцы древостоя, произрастающего в зоне сильного загрязнения фторсодержащими поллютантами. Исследование длины пыльцевой трубки обнаружило аналогичные тенденции, однако различия менее четкие.

Установлено, что при высокой индивидуальной изменчивости пыльцы по содержанию крахмала и аминокислот средний процент сильно- и слабоокрашенных реактивом Люголя пыльцевых зерен выше в фоновых условиях, чем в зонах сильного загрязнения фторсодержащими и серосодержащими поллютантами

Полученные результаты позволят выделить толерантные к поллютантам особи сосны обыкновенной для использования их в последующей работе по селекции и лесовосстановлению.

ЛИТЕРАТУРА

Лесные экосистемы и атмосферное загрязнение / Под ред. В.А. Алексеева. Л.: Наука, 1990. 200 с.

Любашевский Н.М., Токарь В.И., Щербаков С.В. Техногенное загрязнение окружающей среды фтором. Екатеринбург, 1996. 235 с.

Негруцкая А.Е. Влияние промышленного загрязнения на пыльцу сосны обыкновенной // Развитие мужской генеративной сферы растений. Симферополь, 1983. С. 5.

Петункина Л.О. и др. Сосна обыкновенная как средство мониторинга состояния среды // Проблемы биологического разнообразия Южной Сибири. 1 Междунар. регион. науч.-практ. конф. 10-22 мая 1997. Кемерово,1997. С. 234-235.

Шевченко С.В. Пыльца растений как индикатор загрязнения воздуха // Развитие мужской генеративной сферы растений. Симферополь, 1983. С. 94.

Wolter J.H.B., Wariens M.J.M. Effect of air pollutants of Pollen // Bot. Rev. 1987. Vol. 53. № 3. P. 372-414.