УДК 630.5

Д.М. Шинелев, З.Я. Нагимов, Д.А. Салангина, А.И.Шинелева (Уральский государственный лесотехнический университет)

ЗАВИСИМОСТЬ ФРАКЦИЙ НАДЗЕМНОЙ ФИТОМАССЫ ДЕРЕВЬЕВ ОТ ИХ ТАКСАЦИОННЫХ ПОКАЗАТЕЛЕЙ В ЕЛОВЫХ КУЛЬТУРАХ БИЛИМБАЕВСКОГО ЛЕСХОЗА

В еловых культурах Билимбаевского лесхоза в возрасте от 6 до 15 лет заложены три пробные площади, на которых определен фракционный состав надземной фитомассы у 18 деревьев. Установлена зависимость фитомассы от диаметра ствола и возраста дерева, рассчитаны соответствующие двухфакторные регрессии.

Исследования надземной фитомассы культур ели проводились в условиях Билимбаевского лесхоза, расположенного в подзоне южнотаежных лесов Среднеуральской низкогорной и Зауральской холмистопредгорной провинции (Колесников и др., 1974). Надземная и подземная фитомассы культур ели в возрасте 9 и 20 лет на Урале ранее исследовались на уровне древостоев (Усольцев и др., 2002; Терехов, Усольцев, 2005). Нами исследована фитомасса в таких культурах на уровне деревьев с целью составления в дальнейшем таблиц для подеревной ее оценки.

Пробные площади закладывались в насаждениях первого класса возраста, второго класса бонитета с учетом теоретических положений лесной таксации и требований ОСТ 56-69-93. В соответствии с рядом распределения стволов по диаметру формировалась систематическая выборка модельных деревьев для определения надземной фитомассы в количестве 5—7 шт. на каждой пробной площади. Надземную фитомассу модельных деревьев определяли осенью с подразделением на следующие фракции: ствол, хвоя, живые ветви, генеративные органы, отмершие ветви. Фитомасса ствола, кроны и отмерших ветвей определялась прямым взвешиванием на электронном безмене с точностью до 50 г.

Для оценки массы древесной зелени, хвои, живых и отмерших ветвей в кроне формировали выборку модельной части кроны. Из кроны механическим путем отбирали навеску (1/4 – 1/5 часть кроны), которую делили на фракции: хвоя, живые ветви (скелет кроны), генеративные органы и отмершие ветви, и каждую фракцию взвешивали с точностью до 1 г. По установленным соотношениям определялся фракционный состав всей кроны. Таксационные показатели модельных деревьев и древостоев на пробных площадях (табл. 1) определялись общепринятыми методами. Объем ствола в коре определялся по сложной формуле Губера. Обработку экспериментального материала выполняли по стандартной программе Statgraphics.

При исследовании фитомассы было важно выявить минимальное количество легко и точно замеряемых таксационных показателей, объясняющих максимальную долю изменчивости массы той или иной фракции. По простоте и надежности определения в полевых условиях и степени корреляции с фракциями фитомассы наибольший интерес представляет диаметр дерева. На рис.1-3 представлены зависимости массы стволов, крон и хвои от диаметра ствола в обычных, а на рис. 4-5 — в логарифмических координатах. Последние три графика наглядно подтверждают строго линейную зависимость между исследуемыми показателями в логарифмических координатах. На графиках поле рассеивания экспериментальных данных массы стволов значительно уже, чем массы крон и хвои. Но и изменение массы крон и хвои с увеличением толщины деревьев носит четкий, вполне закономерный характер.

Таблица 1 - Таксационная характеристика модельных деревьев

	Возраст, лет	Диаметр, см	Высота,	Объем дерева, м ³	· · ·	Фитомасса, кг				
№ дерева					ствола	кроны	ХВОЯ	отмерших вствей	генератив- ных органов	
	Пробная площаль № 1									
1	14	14,1	10,21	0,0699	69,55	72,80	54,70	1,100	-	
2	14	11,8	9,80	0,0493	44,5	47,40	29,30	0,250	-	
3	14	9,0	8,44	0,0270	25,15	25,10	15,80	0,250	4,2	
4	14	7,3	7,93	0,0175	15,75	15,35	10,23	0,150	•	
5	14	5,2	5,50	0,0069	6,70	5,35	3,62	0,100	-	
6	14	3,2	4,00	0,0022	2,20	2,40	1,70	0,025	-	
7	14	2,4	3,94	0,0014	1,35	1,05	0,75	0,050	-	
	Пробная площадь № 2									
1	6	1,3	1,80	0,0005	0,60	1,80	0,95	0,005	-	
2	6	1,9	2,17	0,0010	1,05	2,20	1,32	0,010	-	
3	6	2,3	2,70	0,0015	1,50	3,05	1,77	0,010	-	
4	6	3,7	3,54	0,0033	3,10	4,05	2,39	0,030	-	
5	6	5,2	4,89	0,1363	5,75	5,95	4,10	0,020	•	
	Пробная площадь № 3									
1	15	1,3	1,96	0,0005	0,60	1,45	1,05	0,010	-	
2	15	2,8	3,07	0,0019	1,80	3,20	2,04	0,020	-	
3	15	11,5	10,53	0,0518	47,05	38,90	26,40	0,300	-	
4	15	8,4	8,35	0,0249	21,35	22,75	16,09	0,100	-	
5	15	10,4	9,54	0,0376	33,55	25,50	16,02	0,150	-	
6	15	6,1	6,58	0,0112	10,10	11,60	7,65	0,025		

При расчете зависимостей следует отдавать предпочтение более простым моделям, константы которых имеют определенное биологическое объяснение. Среди таких моделей заслуживают особого внимания те,

которые путем различных преобразований могут быть приведены к линейному виду. При описании таксационных зависимостей наилучшие результаты обеспечивает аллометрическая (степенная) функция (Рокицкий, 1973; Никитин, Швиденко, 1978; Усольцев, 1985 и др.)

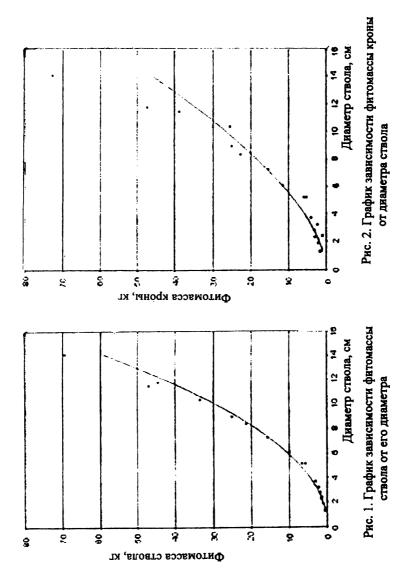
$$y = a x^b, (1)$$

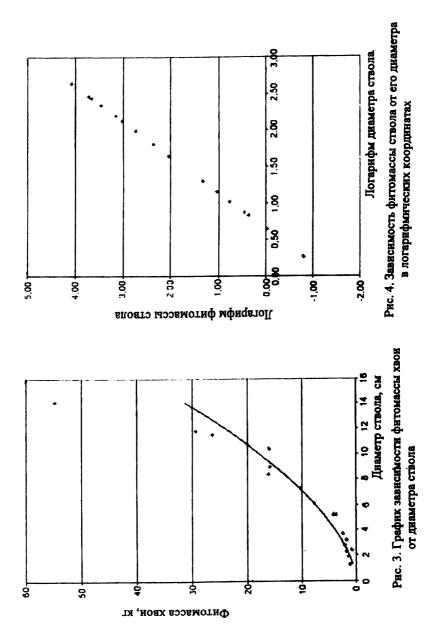
которая путем логарифмирования приводится к линейному виду

$$ln y = ln a + b ln x.$$
(2)

Исследование закономерностей формирования надземной фитомассы деревьев целесообразно проводить на основании уравнения множественной регрессии. Результаты исследований авторов (Усольцев, 1985; Нагимов, 2000) свидетельствуют о целесообразности совместного использования в уравнениях множественной регрессии в качестве определяющих факторов показателей условий местопроизрастания H_{100} , возраста, диаметра и высоты деревьев.

Учитывая характер зависимости массы фракций от диаметра и возраста, в качестве общего уравнения принято уравнение множественной аллометрии, приведенное к линейному виду:


$$\ln(P_i) = a_0 + a_1 \ln(D) + a_2 \ln(A) \tag{3}$$


где P_i – одна из фракций надземной фитомассы, кг; D – диаметр дерева, см; A – возраст дерева, лет; a_0 ; a_1 ; a_2 – константы.

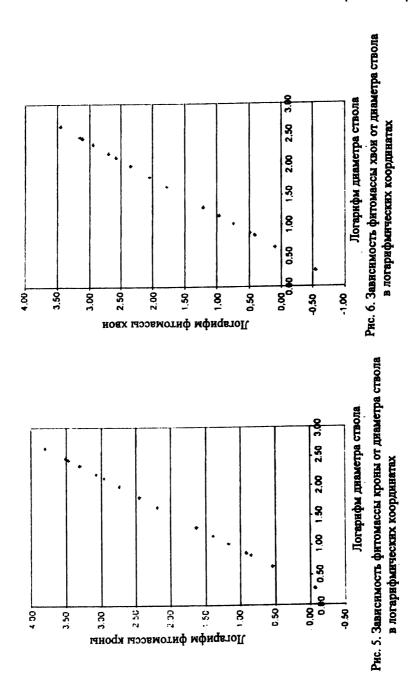

Результаты расчета уравнений (3) по всем фракциям надземной фитомассы деревьев сведены в табл. 2.

Таблица 2 -	Характеристика	уравнений (3)
-------------	----------------	---------------

Фракция фитомассы	Уравнение	R ²	SE
Ствол	ln(P)= -1,429+2,035 ln(D)+0,046 ln (A)	0,99	18,6
Крона	In(P)= -0,083+1,686 ln(D)-0,203 ln (A)	0,90	41,7
Хвоя	ln(P)= -0,868+1,688 ln (D)-0,055 ln (A)	0,91	39,8

При использовании данных табл. 2 необходимо иметь в виду, что область использования разработанных уравнений ограничивается диапазоном варьирования использованных переменных модельных деревьев в древостоях пробных площадей.

Обращает на себя внимание отрицательный знак переменной возраста при оценке фитомассы кроны и хвои. Это означает, что при фиксированных значениях диаметра фитомасса кроны уменьшается с увеличением возраста. Это положение ряд исследователей объясняет возрастными изменениями ранга деревьев одинаковых размеров (Усольцев, 1985; Луганский, Нагимов, 1994).

Совокупность двух факторов (диаметра и возраста деревьев) наиболее точно отражает изменение массы стволов. Значение коэффициента детерминации (R²) свидетельствует, что возраст и диаметр деревьев объясняют изменчивость массы стволов, крон и хвои соответственно на 99, 90 и 91%. Разработанные уравнения характеризуются относительно низкими стандартными ошибками.

Таким образом, наши исследования свидетельствуют о целесообразности применения многомерного анализа при исследовании фитомассы в культурах ели. Использование в уравнениях множественной регрессии диаметра и возраста деревьев обеспечивает хорошие результаты при оценке различных фракций фитомассы деревьев.

Библиографический список

Колесников Б.П. и др. Лесорастительные условия и типы лесов Свердловской области. Свердловск: УНЦ АН СССР, 1974. 176 с.

Луганский Н.А., Нагимов З.Я. Структура и динамика сосновых древостоев на Среднем Урале. Екатеринбург: УГЛТА, 1994. 140 с.

Нагимов З.Я. Закономерности роста и формирования надземной фитомассы сосновых древостоев: Автореф. дис.... д-ра с.-х. наук. Екатеринбург: УГЛТА, 2000. 40 с.

Никитин К.Е. Швиденко А.З. Методы и техника обработки лесоводственной информации. М.: Лесн. пром-стъ, 1978. 272 с.

Усольцев В.А. Моделирование структуры и динамики фитомассы древостоев. Красноярск: Изд-во Красноярского ун-та, 1985. 191 с.

Усольцев В.А. и др. Фитомасса еловых культур на Среднем Урале // Экология. Наука, образование, воспитание. Вып. 3. Брянск: БГИТА, 2002. С. 48-50.

Рокицкий П.Ф. Биологическая статистика. Минск: Вышэйш. шк., 1973. 320 с.

Терехов Г.Г., Усольцев В.А. Фитомасса 9-летних ельников искусственного происхождения в связи со способом их формирования на Среднем Урале // Экологические проблемы Севера: Межвуз. сб. науч. тр. Архангельск: АГТУ, 2005. С. 107-108.