ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра древесиноведения и специальной обработки древесины

> А.Г. Гороховский Е.Е. Шишкина

СБОРНИК ЗАДАЧ ПО ГИДРОТЕРМИЧЕСКОЙ ОБРАБОТКЕ ДРЕВЕСИНЫ

Методические указания

по курсу «Гидротермическая обработка древесины» для студентов специальности 250403 «Технология деревообработки» направления 250300 «Технология и оборудование лесозаготовительных и деревообрабатывающих производств»

Екатеринбург 2008

Печатается по рекомендал механической технологии древес		
Рецензент – канд. техн. наук, дог	цент О.Н. Чернышев	
Редактор Е.Л. Михайлова		
Оператор А.А. Сидорова		
Подписано в печать 10.09.2008 Плоская печать Заказ	Формат 60×84 1/16 Печ. л. 1,39	Поз. Тираж 50 экз. Цена 4 р.60 коп.

Редакционно-издательский отдел УГЛТУ

Отдел оперативной полиграфии УГЛТУ

ПРЕДИСЛОВИЕ

Настоящий сборник задач предназначен для углубленного изучения свойств влажного воздуха как агента сушки в курсе «Гидротермическая обработка древесины».

Перед решением задач на практических занятиях или при самостоятельной работе студентам надлежит изучить лекционный материал и разделы учебника П.С. Серговского и А.Н. Расева «Гидротермическая обработка и консервирование древесины», касающиеся свойств обрабатывающей среды и режимов камерной сушки пиломатериалов.

1. ВЛАЖНЫЙ ВОЗДУХ

Для гидротермической обработки древесины часто используют атмосферный воздух. В воздухе всегда присутствует какое-то количество влаги в виде водяного пара. Смесь сухого воздуха с водяным паром принято называть влажным воздухом.

Важным параметром, характеризующим состояние влажного воздуха, является парциальное давление водяного пара. **Парциальное** давление компонента в смеси газов — это давление, которое имел бы данный компонент при удалении из объема, занимаемого смесью, всех остальных газов.

Парциальное давление водяного пара во влажном воздухе не может быть больше давления насыщения при данной температуре, т.е. $p_{\scriptscriptstyle \Pi} \leq p_{\scriptscriptstyle H}.$

Воздух, который содержит насыщенный водяной пар ($p_{\pi} = p_{H}$), называют насыщенным паром воздухом. Воздух, для которого выполняется неравенство $p_{\pi} < p_{H}$, называется ненасыщенным.

Для оценки количества влаги, присутствующей в воздухе, используют следующие параметры: относительную влажность и влагосодержание.

Относительная влажность воздуха ϕ – это отношение парциального давления водяного пара, содержащегося во влажном воздухе, к давлению насыщенного водяного пара при той же температуре:

$$j = \frac{p_n}{p_{_H}}. (1)$$

Величину относительной влажности часто выражают в процентах. Поскольку $0 \le p_\pi \le p_H$, то $0 \le \phi \le 100$ %. Для сухого воздуха $\phi = 0$ %, для воздуха, насыщенного водяным паром, $\phi = 100$ %.

Влагосодержанием называют отношение массы пара, содержащегося во влажном воздухе, к массе сухого воздуха. Величину влагосодержания выражают в граммах влаги на 1 кг сухого воздуха. Влагосодержание d, г/кг, определяется по формуле

$$d = 622 \frac{p_n}{p_a - p_n},\tag{2}$$

где p_a – атмосферное давление, равное 100 000 Па.

Из уравнения (2) следует, что парциальное давление водяного пара, Па, во влажном воздухе равно:

$$p_n = \frac{p_a d}{622 + d}. (3)$$

Плотность влажного воздуха представляет собой общую массу воздуха и водяного пара в единице объема. При необходимости рассчитать **плотность** влажного воздуха ρ , $\kappa \Gamma/M^3$, пользуются формулой

$$r = \frac{349 - 132 \frac{d}{622 + d}}{273 + t}$$

Приведенный удельный объем влажного воздуха, м³, т.е. объем, занимаемый 1 кг смеси воздуха и водяного пара, представляет собой величину, обратную ρ .

$$V = 4,6240^{-6} 4T(622 + d),$$

$$T = t + 273,$$

где Т – термодинамическая температура, К.

Отсюда следует, что с увеличением парциального давления пара, т.е. с увеличением влажности воздуха, плотность его уменьшается. Поэтому влажный воздух всегда легче, чем сухой.

Количество тепла, содержащееся в 1 кг воздуха, называется **теплосодержанием** воздуха, или энтальпией.

Теплосодержание I, кДж/кг, определяется по формуле

$$I = t + 0.01d(1.93d + 2490), \tag{4}$$

где t – температура воздуха, ${}^{0}C$.

Задача 1 Определить расчетным путем неизвестные параметры влажного воздуха (I, d, t, P_n ,, ϕ) до и после процесса нагревания (табл. 1) Таблица 1

№	I_0 ,	d =/	р Па	t ₀ , ⁰ C		Нагрев	ание до
варианта	кДж/кг	d_0 , $\Gamma/\kappa\Gamma$	$P_{π0}$, $Πa$	$\iota_0, \; C$	φ_0	t ₁ , ⁰ C	φ_1
1	1300	-	-	80	-	98	-
2	-	-	25000	67	-	93	-
3	-	205	-	-	0,85	-	0,28
4	-	-	-	53	0,75	104	-
5	500	-	-	65	-	82	-
6	580	185	1	1	1,0	98	1
7	_	-	19000	-	0,9	85	-
8	-	52	-	42	1	79	1
9	610	-	-	70	-	92	-
10	820	-	-	75	1	89	1
11	-	145	-	60	-	70	-
12	-	-	-	50	0,8	60	-
13	-	100	-	-	0,5	-	0,3
14	-	-	10000	50	-	80	-
15	-	-	8000	42	-	-	0,75
16	-	45	-	40	-	65	-
17	-	-	-	55	1,0	90	-
18	-	-	3500	30	-	-	0,45
19	-	150	-	-	0,8	-	0,35
20	-	85	-	50	-	78	-
21	-	25	-	30	-	70	-
22	-	-	3500	30	1	75	1
23	-	-	-	28	0,65	80	-
24	-	-	9500	58	-	-	0,38
25	-	120	_	60	-	95	_
26	-	120	-	-	0,88	-	0,3
27	-	-	5300	46	-	-	0,2
28	-	59	-	48	-	90	_
29	-	200	-	-	0,98	-	0,45
30	-	-	-	43	0,65	64	

Задача 2

Воздух с температурой t_1 и степенью насыщенности ϕ_1 в процессе сушки охладился до температуры t_2 . Определить влагосодержание d_2 и степень насыщенности ϕ_2 в результате этого процесса. Определить, сколько влаги испарили в себя М кг воздуха (табл. 2)

Таблица 2

№ варианта	t_1	φ_1	t_2	M
1	60	0,5	50	80
2	65	0,65	55	90
3	63	0,4	48	85
4	70	0,4 0,5	60	83
5	55	0,7	50	58
6	63	0,25	50	100
7	80	0,75	75	90
8	75	0,63	64	105
9	78	0,8	65	200
10	90	0,4	50	92
11	85	0,6	40	89
12	73	0,52	60	130
13	75	0,61	50	140
14	80	0,54	64	98
15	85	0,9	61	103
16	69	0,83	60	94
17	58	0,47	49	69
18	67	0,65	62	205
19	92	0,3	87	187
20	57	0,6	53	93
21	61	0,74	55	145
22	77	0,63	70	167
23	83	0,38	75	91
24	88	0,82	82	108
25	94	0,53	86	69
26	52	0,57	47	128
27	59	0,46	55	107
28	70	0,7	64	95
29	65	0,51	61	94
30	78	0,59	76	100

Задача 3

Воздух, имеющий температуру t_1 и степень насыщенности ϕ_1 , в количестве M_1 кг смешали с M_2 кг другого воздуха, имеющего температуру t_2 и степень насыщенности ϕ_2 . Определить параметры ($I_{\text{см}}$, $d_{\text{см}}$, $t_{\text{см}}$, $\phi_{\text{см}}$) полученной смеси (табл 3).

Таблица 3

	Параметры первого Параметры второго										
\mathcal{N}_{Ω}	_	-	-	_	_	_					
варианта		компонент			компонент						
	t_1	φ ₁	M_1	t_2	φ ₂	M_2					
1	60	0,8	80	30	0,6	10					
2	75	0,63	105	35	0,63	15					
3	78	0,8	200	40	0,55	40					
4	90	0,4	92	60	0,3	23					
5	85	0,6	89	25	0,45	9					
6	73	0,52	130	36	0,36	12					
7	75	0,61	140	29	0,5	16					
8	80	0,54	98	19	0,4	5					
9	85	0,9	103	24	0,61	25					
10	69	0,83	94	41	0,39	6					
11	58	0,47	69	23	0,7	10					
12	67	0,65	205	26	0,6	26					
13	92	0,3	187	29	0,58	30					
14	57	0,6	93	17	0,54	31					
15	61	0,74	145	28	0,67	18					
16	77	0,63	167	32	0,62	34					
17	83	0,38	91	34	0,56	21					
18	88	0,82	108	27	0,34	15					
19	94	0,53	69	32	0,62	23					
20	52	0,57	128	35	0,67	24					
21	59	0,46	107	29	0,58	28					
22	70	0,7	95	25	0,85	29					
23	65	0,51	94	34	0,59	33					
24	78	0,59	100	36	0,46	22					
25	60	0,5	90	39	0,43	17					
26	65	0,65	85	31	0,81	11					
27	63	0,4	83	26	0,63	9					
28	70	0,5	58	37	0,51	8					
29	55	0,7	100	16	0,57	28					
30	63	0,25	89	19	0,54	24					

Задача 4

В сушильную камеру с многократной циркуляцией из атмосферы поступает M_0 воздуха с температурой t_0 и влагосодержанием d_0 . Он смешивается с M_1 отработавшего сушильного агента, температура которого t_1 и относительная влажность ϕ_1 . Определить температуру и относительную влажность сушильного агента, поступающего в сушильное пространство (табл. 4). Каким будет удельный расход теплоты на испарение влаги?

Таблина 4

						Гаолица 4
№ варианта	M ₀ , кг/с	t ₀ , ⁰ C	d ₀ , г/кг	М ₁ , кг/с	t ₁ , ⁰ C	ϕ_1
1	12	34	25	93	61	0,3
2	16	36	10	145	77	0,6
3	5	39	28	167	83	0,74
4	25	31	24	91	88	0,63
5	14	26	20	108	94	0,38
6	10	37	21	69	52	0,82
7	26	16	11	128	59	0,53
8	6	19	12	107	70	0,57
9	31	35	26	95	65	0,46
10	18	40	30	94	78	0,7
11	4	60	56	100	60	0,51
12	21	25	16	90	65	0,59
13	10	36	30	99	63	0,5
14	15	29	18	108	70	0,65
15	40	19	12	69	55	0,4
16	23	24	16	128	63	0,5
17	9	41	22	107	60	0,7
18	12	23	14	95	75	0,25
19	16	26	13	94	78	0,8
20	5	29	18	100	90	0,63
21	25	23	10	90	85	0,8
22	6	26	12	85	73	0,4
23	10	29	16	83	75	0,6
24	26	17	15	58	80	0,52
25	5	28	19	100	85	0,61
26	31	32	20	89	69	0,54
27	8	34	21	116	58	0,9
28	11	27	17	157	67	0,83
29	3	32	19	96	92	0,47
30	7	35	20	117	57	0,65

2. РЕЖИМЫ КАМЕРНОЙ СУШКИ ПИЛОМАТЕРИАЛОВ

Режим сушки — это расписание состояния сушильного агента, вступаещего в контакт с материалом, которое устанавливает изменение его параметров во времени или в зависимости от влажности древесины. Состояние сушильного агента принято характеризовать температурой, психрометрической разностью и степенью насыщенности. Эти параметры находятся в тесной взаимосвязи друг с другом, т.е. фиксированным значениям двух из них соответствует строго определенное значение третьего.

Различают режимы низкотемпературного и высокотемпературного процессов сушки.

Низкотемпературные режимы предусматривают использование в качестве сушильного агента влажного воздуха с температурой в начальной стадии сушки менее 100 ⁰C. При этом допускается использование более высокой температуры в конце процесса, когда древесина уже не содержит свободной воды.

Режимы низкотемпературного процесса могут иметь разный температурный уровень в зависимости от желаемой интенсивности процесса и допустимых изменений свойств древесины. Установлены три категории режимов низкотемпературной сушки:

1) **мягкие режимы**, обеспечивающие бездефектную сушку пиломатериалов при полном сохранении естественных физикомеханических свойств древесины, в том числе ее прочности, цвета и состояния смолы, рекомендуются для сушки пиломатериалов до транспортной влажности и для сушки до эксплуатационной влажности пиломатериалов, к качеству которых предъявляются особо высокие требования;

- 2) **нормальные режимы**, обеспечивающие бездефектную сушку пиломатериалов при полном сохранении прочностных свойств древесины, но с возможными незначительными изменениями ее цвета, рекомендуются для сушки древесины до транспортной и эксплуатационной влажностей;
- 3) форсированные режимы, обеспечивающие бездефектную сушку пиломатериалов при сохранении прочности на изгиб, растяжение и сжатие, но при некотором (до 20 %) снижении прочности на скалывание с возможным потемнением древесины, рекомендуются для сушки пиломатериалов до эксплуатационной влажности в случаях, когда допустимо снижение прочности древесины.

Высокотемпературные режимы предусматривают использование в качестве сушильного агента перегретого пара атмосферного давления с температурой более $100~^{0}$ C на протяжении всего процесса сушки.

В настоящее время разработаны и стандартизированы три группы режимов:

- 1) низкотемпературного процесса сушки в камерах периодического действия;
- 2) высокотемпературного процесса сушки в камерах периодического действия;
 - 3) сушки в противоточных камерах непрерывного действия.

Задача 5

Для пиломатериалов и условий, указанных в табл. 5, выбрать режимы низкотемпературного процесса сушки в камерах периодического действия. Определить значения параметров сушильного агента во время процесса сушки.

Таблица 5

эиан- а	Требования к	ода	Толщина пилома-	Влажн древеси	
№ вариан- та	высушенным пиломатериалам	Порода древесины	териалов, мм	начальная	конечная
1	2	3	4	5	6
1	Сохранение прочности древесины. Цвет не имеет значения	Ель	32	70	15
2	Сохранение физикомеханических войств древесины	Кедр	45	80	12
3	Сохранение прочности древесины. Цвет не имеет значения	Лист- венница	60	60	10
4	Допустимо снижение прочности древесины	Сосна	25	80	12
5	Допустимы изменения цвета и прочности древесины на скалывание	Пихта	50	50	8
6	Изменение цвета древесины недопустимо	Ель	40	50	12
7	Максимальное со- хранение всех свойств древесины	Сосна	32	75	7
8	Сохранение физико- механических свойств древесины	Пихта	50	90	15
9	Изменение цвета древесины недопустимо	Сосна	55	60	12
10	Сохранение прочности древесины. Цвет не имеет значения	Береза	32	50	10

Продолжение табл. 5

1	2	3	4	5	6
11	Допустимо снижение прочности древесины	Осина	80	80	22
12	Максимальное сохранение всех свойств древесины	Береза	50	60	12
13	Сохранение прочности древесины. Цвет не имеет значения	Сосна	40	100	8
14	Изменение цвета древесины недопустимо	Ольха	32	80	10
15	Допустимы изменения цвета и прочности древесины на скалывание	Липа	25	90	12
16	Максимальное сохранение всех свойств древесины	Кедр	55	60	22
17	Сохранение физико- механических свойств древесины	Лист- венница	60	35	10
18	Изменение цвета древесины недопустимо	Осина	35	40	8
19	Допустимы изменения цвета и прочности древесины на скалывание	Сосна	40	55	7
20	Сохранение физико- механических свойств древесины	Береза	50	60	12
21	Сохранение прочности древесины. Цвет не имеет значения	Ель	25	70	10
22	Максимальное сохранение всех свойств древесины	Кедр	32	80	8
23	Допустимо снижение прочности древесины	Лист- венница	40	45	15
24	Изменение цвета древесины недопустимо	Сосна	25	65	7

Окончание табл. 5

1	2	3	4	5	6
25	Максимальное со- хранение всех свойств древесины	Дуб	40	70	15
26	Допустимы изменения цвета и прочности древесины на скалывание	Клен	55	85	8
27	Сохранение физикомеханических свойств древесины	Сосна	60	45	10
28	Максимальное со- хранение всех свойств древесины	Бук	50	50	12
29	Изменение цвета древесины недопустимо	Сосна	32	80	7
30	Сохранение физикомеханических свойств древесины	Лист- венница	75	40	8

приложения

Приложение 1
Режимы низкотемпературного процесса сушки пиломатериалов
из древесины сосны, ели, пихты, кедра (ГОСТ 19773-84)

					TT.	22.600			
Средняя	ры	1	2	3		омер	6	7	0
влажность	Параметры режима	1	2		4	5	6	7	8
древесины,	рал			Толщи					ap. 75
%	Пај	до 22	св. 22	св. 25	св. 32	св. 40	св. 50	св. 60	св. 75
			до 25	до 32	до 40	до 50	до 60	до 75	до 100
	t, ⁰ C	57		ие режі		ŕ	55	50	52
> 25	A	57	57	57	55	55	55	52	52
> 35	ŕ	6	5	4	4	4	4	3	2
	φ t, ⁰ C	0,73	0,77	0,81	0,81	0,81	0,81	0,84	0,90
25 20	´ ^	61	61 9	61 8	58 7	58 7	58 7	55	55
35 - 20		10			-			6	5
	φ t, ⁰ C	0,59	0,62	0,66	0,69	0,69	0,69	0,72	0,76
< 20	´ ^	77 26	77	77	75	75	75	70	70
< 20	, i	26	25	24	24	24	24	21	20
	φ	0,27	0,29	0,31	0,30	(LI)	0,30	0,33	0,35
	t, ⁰ C			ьные ре			71	61	55
> 25	Δt , ${}^{0}C$	83	79	79	75 5	73	71	64	55
> 35		9	7	6	5	5	4	3	2
	φ t, ⁰ C	0,68	0,73	0,77	0,80	0,80	0,83	0,86	0,9
25 25	t, °C \Delta t, °C	88	84	84	80	77 9	75	68	58
35 - 25		14	12	11	10		8		5
	φ t, ⁰ C	0,55	0,59	0,62	0,64	0,66	0,70	0,71	0,77
< 25	´ o	110 36	105	105	100	96	94	85	75
< 25	•		33	32	30	28	27	24	22
	φ	0,24	0,26	0,27	0,29	0,31	0,32	0,33	0,34
	t, ⁰ C			ванные			02	72	
> 25	Δt , C	94 11	92	92	90 7	87	83	73	-
> 35	Δι, С	11 0,65	10 0,67	8		6 0,78	0,80	4 0,84	-
	φ t, ⁰ C		·	0,73	0,75			1	-
25 25	t, °C \Delta t, °C	99 16	97 15	97 12	95 12	92	88	78 9	-
35 - 25		16 0.54	15	13	12	11	10		-
	φ t, ⁰ C	0,54	0,55	0,60	0,62	0,64	0,66	0,66	-
- 25	t, °C \Delta t, °C	125	123	123	120	115	110	98	-
< 25		42	39	39	37	36	32	29	-
	φ	0,21	0,24	0,24	0,25	0,25	0,29	0,30	-

Приложение 2
Режимы низкотемпературного процесса сушки пиломатериалов
из древесины лиственницы (ГОСТ 19773-84)

<i>C</i>	19				Номер			
Средняя	Параметры режима	Л1	Л2	Л3	Л4	Л5	Л6	Л7
влажность	аме ЖИ		Тол	щина п	иломате	риалов	, MM	
древесины,	aps per	то 22	св. 22	св. 25	св. 32	св. 40	св. 50	св. 60
/0		до 22	до 25	до 32	до 40	до 50	до 60	до 75
		Нор	мальны	е режим	мы (Н)			
	t, °C	70	70	70	65	60	60	60
> 35	Δt , ${}^{0}C$	9	8	6	5	4	3	2
	O	0,64	0,68	0,76	0,78	0,81	0,86	0,90
	t, ⁰ C	75	75	75	70	65	65	65
35 - 25	Δt , ${}^{0}C$	15	15	15	10	9	7	5
	φ	0,49	0,49	0,49	0,61	0,63	0,71	0,78
	t, OC	80	80	80	75	70	70	70
< 25	Δt , ${}^{0}C$	26	25	25	20	19	18	15
	φ	0,28	0,29	0,30	0,38	0,37	0,39	0,47
		Форси	ированн	ые реж	имы (Ф)		
	t, °C	90	90	82	75	75	72	70
> 35	Δt , ${}^{0}C$	9	7	4	4	3	2	2
	φ	0,69	0,75	0,84	0,84	0,87	0,92	0,91
	t, OC	98	96	87	80	80	78	76
35 - 25	Δt , ${}^{0}C$	12	11	8	8	6	5	4
	φ	0,63	0,65	0,72	0,70	0,77	0,80	0,84
	t, C	112	110	108	100	100	95	90
< 25	Δt , ${}^{0}C$	32	30	29	28	26	20	18
	φ	0,30	0,32	0,32	0,32	0,35	0,44	0,47

Приложение 3
Рекомендуемые режимы низкотемпературного процесса сушки пиломатериалов лиственных пород

Да	рия ма		Толщина пиломатериалов, мм											
Порода	Категория режима	до 22	св. 22 до 25	св. 25 до 32	св. 32 до 40	св. 40 до 50	св. 50 до 60	св. 60 до 75	св. 75 до 100					
Бере-	M	6-Д	6-Γ	6-B	6-B	7-B	8-B	-	-					
3a,	Н	3-Д	4-Γ	4-B	5-B	6-Б	7-Б	8-Б	9-Б					
ольха	Φ	2-Д	3-Г	3-B	4-B	_	_	_	-					
Осина, липа, тополь	Н Ф	3-Γ 2-Γ	3-Б 2-Б	4-Б 3-Б	5-B 4-B	6-B -	7-B -	8-B -	9-B -					
Бук,	Н	3-B	4-B	5-B	5-Б	6-Б	7-A	8-Б	-					
клен	Φ	2-Γ	3-B	4-B	-	_	_	-	-					
Дуб,	Н	5-Γ	6-B	6-Б	7-Б	8-Б	9-B	10-Б	_					
ильм	Φ	3-Г	4-B	5-B	_	_	_	_	_					
Opex	Н	5-B	5-Б	6-Γ	6-Б	7-B	8-B	9-B	-					
Граб, ясень	Н	6-B	6-A	7-Б	8-B	8-Б	9-B	10-B	-					

Приложение 4 Рекомендуемые режимы низкотемпературного процесса сушки пиломатериалов лиственных пород

я			Номер режима и параметры $(t, {}^{0}C; \Delta t, {}^{0}C; \varphi)$ сушильного агента													
ИМ	Jb , %	2				3			4		5				6	
Индекс режима	Средняя влажность древесины, ⁽	t	Δt	φ	t	Δt	φ	t	Δt	φ	t	Δt	φ	t	Δt	φ
	>30	82	3	0,88	75	3	0,87	69	3	0,87	63	2	0,91	57	2	0,90
Α	30 - 20	87	6	0,78	80	6	0,77	73	6	0,76	67	5	0,78	61	5	0,78
	<20	108	27	0,35	100	26	0,35	91	24	0,36	83	22	0,36	77	21	0,36
	>30	82	4	0,84	75	4	0,84	69	4	0,83	63	3	0,86	57	3	0,85
Б	30 - 20	87	8	0,72	80	8	0,70	73	7	0,72	67	6	0,75	61	6	0,74
	<20	108	29	0,32	100	28	0,32	91	25	0,34	83	23	0,34	77	22	0,34
	>30	82	6	0,77	75	5	0,80	69	5	0,79	63	4	0,82	57	4	0,81
В	30 - 20	87	10	0,66	80	9	0,66	73	8	0,69	67	7	0,71	61	7	0,70
	<20	108	31	0,30	100	29	0,31	91	26	0,33	83	24	0,32	77	23	0,32
	>30	82	8	0,71	75	7	0,73	69	6	0,76	63	5	0,78	57	5	0,77
Γ	30 - 20	87	12	0,60	80	11	0,61	73	10	0,63	67	9	0,64	61	9	0,62
	<20	108	33	0,27	100	31	0,28	91	28	0,30	83	26	0,29	77	25	0,29
	>30	82	10	0,65	75	9	0,66	69	8	0,68	63	7	0,70	57	6	0,73
Д	30 - 20	87	14	0,55	80	13	0,55	73	12	0,56	67	11	0,58	61	10	0,59
	<20	108	35	0,24	100	33	0,25	91	30	0,26	83	27	0,28	77	26	0,27

Окончание прил. 4

a			Номер режима и параметры $(t, {}^{0}C; \Delta t, {}^{0}C; \varphi)$ сушильного агента														
КИМ	H I'b ', %		7			8			9		10						
Индекс режима	Средняя влажность древесины, "	t	Δt	φ	t	Δt	φ	t	Δt	φ	t	Δt	φ				
	>30	52	2	0,90	-	-	-	-	-	-	-	-	-				
A	30 - 20	55	4	0,81	-	-	-	-	-	-	-	-	-				
	<20	70	20	0,35	-	-	-	-	-	-	-	-	-				
	>30	52	3	0,84	47	2	0,90	42	2	0,89	38	2	0,88				
Б	30 - 20	55	5	0,76	50	5	0,75	45	4	0,79	41	4	0,77				
	<20	70	21	0,33	62	18	0,36	57	17	0,36	52	16	0,36				
	>30	52	4	0,80	47	3	0,84	42	3	0,83	38	3	0,82				
В	30 - 20	55	7	0,68	50	6	0,70	45	5	0,74	41	5	0,72				
	<20	70	22	0,31	62	19	0,33	57	18	0,34	52	17	0,33				
_	>30	52	5	0,75	47	4	0,79	42	4	0,77	38	4	0,76				
Γ	30 - 20	55	8	0,64	50	7	0,66	45	6	0,69	41	6	0,67				
	<20	70	23	0,29	62	21	0,29	57	20	0,29	52	18	0,30				
	>30	52	6	0,71	-	-	-	-	-	-	-	-	-				
Д	30 - 20	55	9	0,60	-	-	-	-	-	-	-	-	-				
	<20	70	24	0,27	-	-	-	-	-	-	-	-	-				

Приложение 5 Зависимость давления насыщения водяного пара от температуры

Темпе-	Давление	Темпе-	Давление	Темпе-	Давление
ратура,	насыщения,	ратура,	насыщения,	ратура,	насыщения,
^{0}C	P _н , Па	1 0 C	P _н , Па	^{0}C	Р _н , Па
1	2	3	4	5	6
0	610,8	32	4753,6	64	23910,0
1	656,6	33	5029,0	65	25008,0
2	705,4	34	5318,2	66	26148,0
3	757,5	35	5621,7	67	27332,0
4	812,9	36	5940,1	68	28561,0
5	871,8	37	6274,0	69	29837,0
6	934,6	38	6624,0	70	31161,0
7	1001,2	39	6990,7	71	32533,0
8	1072,1	40	7374,9	72	33957,0
9	1147,3	41	7777,2	73	35433,0
10	1227,1	42	8198,3	74	36963,0
11	1311,8	43	8639,0	75	38548,0
12	1401,5	44	9099,8	76	40190,0
13	1496,7	45	9581,7	77	41890,0
14	1597,4	46	10085,4	78	43650,0
15	1704,1	47	10612,0	79	45473,0
16	1817,0	48	11161,0	80	47359,0
17	1936,4	49	11735,0	81	49310,0
18	2962,6	50	12335,0	82	51328,0
19	2196,0	51	12960,0	83	53415,0
20	2336,8	52	13612,0	84	55572,0
21	2485,5	53	14292,0	85	57802,0
22	2642,4	54	15001,0	86	60107,0
23	2807,9	55	15740,0	87	62488,0
24	2982,4	56	16510,0	88	64947,0
25	3166,3	57	17312,0	89	67486,0
26	3360,0	58	18146,0	90	70108,0
27	3563,9	59	19015,0	91	72814,0
28	3778,5	60	19919,0	92	75607,0
29	4004,3	61	20859,0	93	78488,0
30	4241,7	62	21837,0	94	81460,0
31	4491,3	63	22854,0	95	84525,0

Окончание прил. 5

1	2	3	4	5	6
96	87658,0	126	232090,0	156	543310,0
97	90943,0	127	239320,0	157	557640,0
98	94301,0	128	246740,0	158	572280,0
99	97760,0	129	254340,0	159	587220,0
100	101325,0	130	262130,0	160	602480,0
101	101325,0	131	270120,0	161	618040,0
102	104996,0	132	278300,0	162	633930,0
103	108776,0	133	186680,0	163	650140,0
104	112668,0	134	295270,0	164	666680,0
105	116675,0	135	304060,0	165	683550,0
106	120799,0	136	313060,0	166	700750,0
107	125042,0	137	322270,0	167	718300,0
108	129408,0	138	331710,0	168	736200,0
109	133898,0	139	341370,0	169	754450,0
110	138515,0	140	35125,0	170	773050,0
111	143260,0	141	361360,0	171	792020,0
112	148140,0	142	371700,0	172	811360,0
113	153160,0	143	382280,0	173	831060,0
114	158320,0	144	393110,0	174	851140,0
115	163610,0	145	404180,0	175	871610,0
116	169050,0	146	415500,0	176	892460,0
117	174640,0	147	427070,0	177	913700,0
118	180380,0	148	438900,0	178	935340,0
119	186280,0	149	450990,0	179	957390,0
120	192330,0	150	463340,0	180	979840,0
121	198540,0	151	475970,0	181	1002700,0
122	204910,0	152	488870,0		
123	211450,0	153	502050,0		
124	218150,0	154	515520,0		
125	225030,0	155	529260,0		

Приложение 6 Степень насыщенности сушильного агента в зависимости от показаний психрометра, %

Температура	Психрометрическая разность Δt , ${}^{0}C$														
сушильного		1							Î			11	10	10	1.4
агента t, ⁰ С	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
38	100	94	88	82	76	70	65	60	56	51	46	42	38	34	30
40	100	94	88	82	76	71	66	61	57	53	48	44	40	36	32
42	100	94	89	83	77	72	67	62	58	54	49	46	42	38	34
44	100	94	89	83	78	73	68	63	59	55	50	47	43	40	36
46	100	94	89	84	79	74	69	64	60	56	51	48	44	41	38
48	100	95	90	84	79	74	70	65	61	57	52	49	46	42	39
50	100	95	90	84	79	75	70	66	62	58	54	50	47	44	41
52	100	95	90	84	80	75	71	67	63	59	55	51	48	45	42
54	100	95	90	84	80	76	72	68	64	60	56	52	49	46	43
56	100	95	90	85	81	76	72	68	64	60	57	53	50	47	44
58	100	95	90	85	81	77	73	69	65	61	58	54	51	48	45
60	100	95	90	86	81	77	73	69	65	61	58	55	52	49	46
62	100	95	91	86	82	78	74	70	66	62	59	56	53	50	47
64	100	95	91	86	82	78	74	70	67	63	60	57	54	51	48
66	100	95	91	86	82	78	75	71	67	63	60	57	54	51	49
68	100	95	91	87	82	78	75	71	68	64	61	58	55	52	49
70	100	96	91	87	83	79	76	72	68	64	61	58	55	52	50
72	100	96	91	87	83	79	76	72	69	65	62	59	56	53	50
74	100	96	92	87	84	80	76	72	69	65	63	60	56	53	51
76	100	96	92	87	84	80	77	73	70	66	64	61	57	54	52
78	100	96	92	88	84	80	77	73	70	66	64	61	58	55	53
80	100	96	92	88	84	80	77	73	70	66	64	61	58	55	53
82	100	96	92	88	84	80	77	74	71	67	65	62	59	56	54
84	100	96	92	88	84	80	77	74	71	68	65	62	59	56	54
86	100	96	92	88	84	80	78	75	72	69	66	63	60	57	55
88	100	96	92	89	85	81	78	75	72	69	66	63	60	57	55
90	100	97	93	89	85	81	79	75	72	69	66	63	61	58	56
92	100	97	93	90	86	82	79	76	73	70	67	64	62	59	57
94	100	97	93	90	86	82	79	76	73	70	67	65	62	60	57
96	100	97	93	90	87	83	80	76	73	70	68	65	62	60	58
98	100	97	93	90	87	83	80	77	74	71	68	65	63	60	58
100	100	97	93	90	87	83	80	77	74	71	68	66	63	61	59
102	-	-	94	91	88	84	81	78	75	72	69	67	64	62	59
104	-	-	-	-	88	84	81	78	75	72	69	67	64	62	60
106	-	-	-	-	_	-	81	78	75	72	69	67	64	62	60
108	-	-	-	-	_	-	-	-	75	72	69	67	64	62	60
110	-	-	-	-	-	-	-	-	-	-	69	67	65	63	61
112	-	-	-	-	_	-	-	-	-	-	-	-	65	63	61

Температура	Психрометрическая разность Δt , 0 C														
сушильного	15	1.0	17		•							22	24	26	20
агента t, ⁰ С	15	16	17	18	19	20	22	24	26	28	30	32	34	36	38
38	27	24	20	17	14	-	-	-	-	-	-	-	-	-	-
40	29	26	23	20	16	ı	-	-	-	ı	ı	-	-	-	-
42	31	28	25	22	19	16	-	-	-	ı	ı	-	-	-	-
44	33	30	27	24	21	18	-	-	-	ı	ı	-	-	-	-
46	34	31	28	25	22	20	16	-	-	ı	ı	-	-	-	-
48	36	33	30	27	24	22	17	-	-	ı	ı	-	-	-	-
50	37	34	31	29	26	24	19	14	-	-	-	-	-	-	-
52	38	36	33	30	27	25	20	16	-	ı	ı	-	-	-	-
54	39	37	34	32	29	27	22	18	14	-	-	-	-	-	-
56	41	38	35	33	30	28	23	19	15	ı	ı	-	-	-	-
58	42	39	36	34	31	29	25	20	17	ı	ı	-	-	-	-
60	43	40	37	35	32	30	26	22	18	14	ı	-	-	-	-
62	44	41	38	36	33	31	27	23	19	16	-	-	-	-	-
64	45	42	39	37	34	32	28	24	20	17	-	-	-	-	-
66	46	43	40	38	35	33	29	25	22	18	15	-	-	-	-
68	46	44	41	39	36	34	30	26	23	19	16	-	-	-	-
70	47	44	41	39	37	35	31	27	24	20	17	-	-	-	-
72	47	45	42	40	38	36	32	28	25	21	18	-	-	-	-
74	48	46	43	41	39	37	33	29	26	22	19	14	-	-	-
76	49	47	44	42	40	38	34	30	27	23	20	15	-	-	-
78	50	48	45	42	40	38	34	31	27	24	21	18	-	-	-
80	50	48	45	43	41	39	35	31	28	25	22	22	-	-	-
82	51	49	46	44	42	40	36	32	29	26	23	18	-	-	-
84	51	49	46	44	42	40	36	32	29	26	23	19	14	-	-
86	52	50	47	45	43	41	37	33	30	27	24	20	15	-	-
88	52	50	48	46	44	42	38	34	31	28	25	21	16	-	-
90	53	51	49	47	45	43	39	35	32	29	26	22	18	-	-
92	54	52	50	47	45	43	39	36	33	30	26	22	19	16	-
94	54	52	50	48	46	44	40	37	33	30	27	23	20	17	-
96	55	53	51	48	46	44	41	37	34	31	28	24	21	18	-
98	55	53	51	49	47	45	41	38	34	31	28	25	22	19	16
100	56	54	52	49	47	45	42	38	35	32	29	26	23	20	17
102	56	54	52	50	48	46	42	38	35	32	29	26	23	21	18
104	57	55	53	50	48	46	42	39	35	32	30	27	24	22	19
106	57	55	53	50	48	46	43	39	36	33	30	27	24	22	20
108	57	55	54	51	49	46	43	40	36	33	31	28	25	23	21
110	58	56	54	51	49	46	43	41	37	34	32	29	26	24	21
112	58	56	54	52	50	47	44	42	38	35	33	30	27	24	22